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ABSTRACT

A philosophical problem arises when one attempts to predict a

competitive economy’s response to a fundamental change in its structure

with the aid of a competitive equilibrium model. Unless the mode]. is

known to admit unique solutions, there is lit~Ue basis for assuming tha t

the computed equilibrium will be attained, even though the model accurateLy

describes the economy’s structure and the behavior of its agents. If,

however, one is able to arrive at the new model by continuously deforming

the old one, then the two versions generally admit solutions which are

connected by a path of equilibria arising from the contin uum of inter—

utediate economies. .~y ascribing a suitable dynamic interpretation to

the deformation, one obtains a rat ionale for expecting the path—connected

solutions to be mutually att.~iined.
A

‘~~~~te description of economic deformations and the computation of

equilibrium paths is the central theme of this study. A general mathemacica.[

framework for modeling economies under deformation is developed by expanding

Herbert Scarf’s original activity analysis formulation to inclvde uncount-

able unit activity sets, unbounded multi—valued demand correspondences ,

and tax end revenue systems similar to those introduced by John Shoven

and John Whalley. Deformations of virtually all economic constructs are

allowed in this general model.

The computation of equilibrium paths is accomplished by a simplicia].

pivot algorithm designed along the lines of the hornotopy—type fixed poftit

techniq ues pioneered by Curtis Eaves. The dimension normally used to
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refine piecewise linear approximations now serves as the index of the

economic deformation. To make this approach viable in practice, a new

family of triangulations of Euclidean space is fashioned out of two con-

ventional triangu].aeions invented by Michael Todd. The geometry of these

triangulations can be dynamically altered by the algozithm as it attempts

to maintain uniform approximation error along the equilibrium path.

The economic model and computational algorithm are translated

into a set of computer routines which generate explicit numerical approxima-

tions to equilibrium paths for a variety of examples. Due to the vast

amount of information embodied in an equilibrium path, problems of this

type require a great deal of computational effort. A detailed analysis

of the behavior of the algorithm on a series of test problems is presented

in the final chapter.
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PREFACE

The research embodied in this dissertation was conducted in 1974

and 1975 while the author was in residence at Stanford University. At

that time certain references, which have since been published in journals

and conference proceedings, were available in manuscript or technical

report form [16], [17], [201, (21]. Although the techniques developed

herein represented the state of the art in 1975, the author recognizes

that advances in the area of fixed point calculation made during the past

three years could perhaps be adapted to expand , simplify, or enhance the

performance of these techniques.

A small group of individuals played significant personal roles

In the evolution of this work. The author is grateful to Curtis Eaves

for originally proposing this line of inquiry, for acquainting the author

with leading authorities in the field, and for accepting the author as

his friend as well as his student. A special debt of gratitude is owed

to John Shaven who, despite an unusually demanding schedule, found time

to meet frequently with the author to offer economic coaching, compu tational

insight, and much—needed doses of optimism and encouragement. The author

benefited throughout his years at Stanford from the wise and benevolent

counsel of Richard Cottle. Romesh Saigal provided helpful suggestions

on the design of the computer programs, and Gail Lemmond Stein, one of

the area’s premier mathematical typists, translated the manuscript into

].egible form.
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CHAPTER 1 •

INTRODUCTION

1.1. Background of the Problem

A little over a decade after general competitive equilibria were

first shown to exist, Herbert Scarf breathed new life into competitive

equilibrium theory by developing a workable algorithm for computing

equilibrium prices and commodity flows in general Walrasian models [12].

The algorithm grew out of Scarf’s earlier work on the computation of

fixed points of a continuous mapping. Like the techniques tha t preceded

it, the algorithm derived its validity from the anti-cycling principle

of Lenike and Howson. Scarf’s approach transcended conventional fixed-

point methods, however, by operating on a space half the dimension of

the one normally encountered in the fixed-point step of existence proofs.

This material reduction of dimension was achieved at the modest expense

of requiring technology to exhibit constant returns to scale (CRS). The

algorithm also harbored an ability to converge even when demand responses

were unbounded. Hence the elaborate and non-constructive truncation

arguments found in virtually all pure existence proofs became superfluous

for CRS models.

Scarf’s achievement raised for the first time the possibility of

extending the scope of competitive equilibrium theory from the realm of

pure theory in to the empir ical arena . The prospect of fitting the theory

to reality, however, highlighted some of the more artificial aspects of

the strict neo-classical interpretation. Many of these features will

I
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either have to be revised or -abandoned if the theory is ever to meet the

scientific criterion of providing sound predictions. A first step in

this direction has been taken by two of Scarf’s students, John Shoven

and John Whalley , who incorporated certain aspects of government fiscal

policy into a competitive equilibrium framework [19].

The present study abandons the requirement that all consumption and

production decisions be made at one instant of time for the entire life-

span of the economy. Instead the view is taken tha t a competitive

economy evolves through a series of short-to-medium term responses by

consumers and producers to longer term exogenous changes in the environ-

ment. These exogenous changes could result either from the conscious

actions of governr.ental authorities or from autonomous factors such as

technological innovation, shifts in consumer tastes, or unperceived

depletion of a vital resource. They could be completely independent of

economic behavior or linked to it in some specific manner, perhaps even

stochastically. Based on this revised interteinporal interpretation,

forecasts of future economic behav ior can be prepared by first estimating

likely values of the autonomous factors, then allowing for proposed

governmen t pol icy, and finally solving for a short-run equilibrium via

Scarf’s algor ithm. This procedure parallels the intuitive approa ch

taken by most economists when asked to predict the future value of some

economic var iable.

Unfortunately the procedure conceals a serious technical flaw. Even

if the parameters of some future economy are known with complete certainty

and the economy attains a competitive equilibrium consistent with these

2
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parameters, the computed forecast could still be wrong. This can occur

whenever multiple equilibria are present. In such instances there is no

way of knowing whether the equilibr ium compu ted by Scarf’ s algor ithm

will be the one attained. The problen is compounded by the fact that no

• general method exists for locating all the equilibria in a given model.

• This predicament is especially frustrating if one wishes to design economic

policy based on the forecasts.

The multiple equilibrium dilenmia is illustrated in Figure 1.1.1.

A hypothetical competitive economy occupies equilibrium state A at

time t
0
. Exogenous parameter changes transform the initial economy into

one admitting three equilibria X, Y, and Z at time t1. Wh ich of the

three states will actually be attained is open to question, however.

T ThIE x z
t i 

t —--4- 0 A

PR ICES

Figure 1.1.1. The multiple equilibrium dileunna.
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The potential ambiguity of forecasts based on competitive equilibrium

models has been recognized by mathematical economists for some time.

Arrow and Hahn [2] conclude that “this problem must be intimately related

to that of the uniqueness of an equilibrium and it is pretty clear that

we shall not expect to get very far without stipulating one or the other

of the conditions that ensure such uniqueness.” The present study submits

that this conclusion is unduly pessimistic and offers instead a method

for obtaining unambiguous forecasts even in the presence of multiple

equilibria .

The heart of the method consists of the notion of continuous deforma-

tion of a competitive economy. The underlying assumption is that the

exogenous parameters which determine short-run equilibria in some economy

evolve continuously over time. An alternative description of this process

is that the economy undergoes a deformation. The end product of the

deformation is a continuum of economies, one for each time point in some

interval. Each intermediate economy presumably possesses its own set of

competitive equilibria. Plotting the equilibrium set of each economy

against its time index produces a revealing subset of price-index space

called the equilibrium graph of the deformation. The geometry of the

equilibrium graph provides the key to resolving ambiguity in forecasts.

A variety of geometric forms are possible. The equilibrium graph

of the hypothetical economy discussed earlier could, for example, assume

any of the shapes displayed in Figures 1.1.2 through 1.1.4. One feature

must always be present, however: a connected subset of equilibria spanning

the interval of the deformation. This phenomenon is intimately related

to the fixed point theorem of Felix Browder .

4
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Given the equilibrium graph for a particular deformation, the opera-

tional hypothesis is that a competitive equilibrium always follows a

connected component of the graph whenever possible. Thus in Figure 1.1.2

the equilibrium would move along arc AX as the time index advanced from

to to t1, rendering states ? and 2 inaccessible. In Figure 1.1.3

the equilibrium would progress from A to B, then veer to the right or

the left depending on the detailed adjustment mechanics in operation at

that instant. The situation in Figure 1.1.11 is somewhat more complex.

At time t~~, after  the equilibrium has moved from A to B, the economy

would experience a period of severe market disruption while prices

readjusted to state C . If , however, arc XY were to dip below the

level, then the ensuing equilibrium would be impossible to predict.

The view of equilibrium dynamics implicit in these examples is

that the economy responds to all parameter changes by restoring equilibrium,

and tha t it does so with a minimum of market dislocation. A rigorous

defense of this interpretation would require the demonstration of some

form of stability for the equilibria along the path and some assurance

that the exoget~ous parameters change slow ly enough to permit economic

adjustments to take effect. Although such questions are interesting

and perhaps necessary for purposes of interpretation, they are of secondary

concern to this study, principally because the computational techniques

• developed herein apply whether such conditions are present or not.

The idea of using connected components of equilibrium graphs to

resolve ambiguity in economic forecasts was inspired largely by the work

of Curtis Eaves in the computation of fixed points [7] , [9]. An extension

6
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of Eaves ’ methods also provides the means for computing numerical approxima-

tions to such components. Eaves originally set out to remedy a weakness

in Scarf ’s general purpose fixed-point algorithm, namely that once an

approximate solution is found, the location of tha t solution contributes

nothing to the search for a more accurate solution. Eaves resolved this

difficulty by introducing the topological concept of homotopy into the

fixed-points arena. Simply stated, one appends an extra dimension to the

domain of the problem of interest and uses this dimension to index a

family of approx imations to the original problem. A simplicial pivot

algorithm follows solutions of the approximate problems closer and closer

to a solution of the problem of interest. The family of approximate

problems and the path of solutions are special cases, respectively, of the

homotopy and connected set of fixed points that arise in Browder’s theorem.

As soon as Eaves’ algorithm became widely known, speculation arose

as to whether the technique could be extended to compute Browder paths

for more general types of homotopies. The only apparent requirement was

to use the extra dimension to index an arbitrary family of problems rather

than a series of approximations to a particular problem. It was further

conjectured that the algorithm could be adapted to trace the evolution of

a competitive equilibrium as the parameters defining the economy changed

over time [ii]. The present study realizes the ambitions of both conjectures

by dev~ 1oping a workable algorithm for approximating connected components

of equilibrium graphs for economies under deformation. At the same time

the advantages of continuously refining grids are made available for

single equilibrium calculations with CRS competitive models.

7
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The approximate equilibrium graphs generated by the algorithm take

the form of special polygonal paths. The accuracy of approximation along

• each path may be prescribed arbitrarily in advance. Examples of the

types of paths that the algorithm would produce for the equilibrium

graphs in Figures 1.1.2 and 1.1.4 are shown in Figures 1.1.5 and 1.1.6.

For structures such as these the algorithm always charts the true course

of the economy. Other geometries can, unfortunately, be more elusive.

The equilibrium graph in Figure 1.1.3, for example, would cause the

algorithm to arbitrarily select one of the two upper branches even though

the economy might follow the other. Also, when the initial economy

admits multiple equilibria, the algorithm could conceivably follow a

path which misses the empirically observed equilibrium altogether .

Intricate geometries notwithstanding, the al gorithm can successfully

resolve the potential ambiguity of forecasts for a wide class of interest-

ing examples , not the least of which are those admitting unique equilibria

but which are not known to do so.

1.2 . Scope of the Study

The computational procedure developed in this study was designed

to handle a very general class of CRS Walrasian models. Many types of

deformations can be applied to these models, including changes in consumer

tastes and wealth, production technology, resource availability, and

taxes and tariffs. To permit the latter type of disp lacement, tax and

revenue sys tems of the form introduced by Shoven and tJhalley [19] are

• 8
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Figure 1.1.5. Polygona l path approximation to equil ibrium
graph of Figure 1.1.2 .
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Figure 1.1.6. Polygona l path approximation to equilibrium
grap h of Figure 1.1.4.
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built into the model. The only regularity conditions imposed on the

deformation and the economies are con tinuity and its extensions to

correspondences, namely upper and lower semi-continuity . Without addi-

tional properties such as differentiability and stability, the interpre-

tation of equilibrium paths may break down, but the mechanics of computing

them are not affected.

The idea of computing equilibrium graphs through an extension of

homotopy-type fixed-point techniques presented a number of technical

challenges. The first of these was fitting Scarf-type economic labels

onto Eaves ’ fixed-point framework. This was accomplished in part by

ascribing an extra degree of range freedom to Eaves ’ abstract labeling.

The extra freedom in turn necessitated an additional assumption to insure

that certain linear inequality systems remained bounded. To accommodate

parametric change in the economies an extra degree of domain freedom

was also added to the labeling. These modest general izations are carr ied

out in Cha pter 2.

The other part of the merger involved a refinement of Scarf’s

method of labeling the boundary of the price simplex. This was necessary

in order that certain “completeness” conditions of the abstract algorithm

be met. At the same time Scarf’s elementary activity analysis model was

generalized to cover some situations which had arisen in practice but

had no formal Justification, e.g., uncountable unit activity sets and

unbounded multi-valued demand functions. The ability to handle unbounded

demand functions is particularly important since truncation of the type

employed in most existence proofs cannot be performed numerically. As a

• 10
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result of these extensions, CRS competitive models of full “existence

proof” generality can now be solved numerically. Beyond the enhancement

of Scarf’s model in these traditional directions, tax and revenue systems

la Shoven and Whalley were included to permit the evaluation of fiscal

~~licy. Finally, the con text of the model was broadened from a single

economy to a continuous family of economies , each possessing the same

structural components but different parametric values . A comprehensive

treatment of the economic model and labeling appears in Chapter 3, along

with proofs that the algorithm clusters in the limit around a connected

component of the equilibrium graph, and that after a finite number of

iterations a meaningful approximation of pre-deterinined accuracy is

available.

Once the union of Scarf ’s economic labeling and Eaves ’ fixed-point

scheme was consummated, a thorny practical matter still had to be resolved. •

The problem was that none of the conventional triangulations used in

homotopy-type fixed-point algorithms were suitable for computing equilibrium

graphs, because they all led to grossly uneven quality of approximation along

the graph. An even more disturbing realization was that no single

triangulation could provide the uniform quality desired for all problems.

A way out of this predicament was found through the dynamic manifold

definition principle expounded in Chapter 4. Using this principle two

new families of triangu].ations were constructed from portions of Michael

Todd ’s and triac’gulations (20] . Every example submitted to

the algorithm automatically causes a triangulation from one of these

families to be custom tailored to its accuracy needs.

11
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In order to test the eff icacy of the algori thm, a series of numerical

experiments was conducted using computer programs designed to implement

the proced ure. The experiments consisted of thirteen test problems, each

of which fit one of the specialized versions ( developed in Chapter 5)  of

the general economic model . The results of the experiments are reported

and analyzed in detail in Chapter 6. 
- 

The experiments demonstrate con-

clusively that the algorithm functions as intended but expends large amounts

of computational effor t. An analysis of iteration counts suggests that

the effort results not so much from the inefficiency of the algorithm

~s from the vast amount of information inherent in the extremely precise

app roximate equilibrium graphs that were genera ted. Owing to this inherent

expense, applications presently appear to be limited to models with a

dozen or so commodities when high precision is required. Re laxing

accuracy requirements by a few percent would permit twenty commodity

examples to be solved in a reasonable amount of time. Both of these

ceilings will, of course, rise as computer technology advances.

The development of the techniques presented in this study would

not have been possible without the previous accomplishments of five men.

Their influence ranges from the conceptual plane to specific formal isms

and proofs . The economic label ing and general logic of the convergenc e
•1

and finite approximation proofs are due to Herbert Scarf. The deformation

concept and elegant formalism of Chapter 2 are due to Curtis Eaves. John

Shoven and John Whalley influenced the study in several ways: their

method of adding taxes to competitive equilibrium nodels was copied almost

12
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verbatim; much of the data in the numerical experiments was supplied by

Shoven; and their pioneering efforts in the empirical comparison of

equilibria raised the fundamental questions that motivated the study in

the first place. Finally, the algorithm could never have been made

computationally feasible without Michael Todd’s “union jack” triangulations

(20], and without his theoretical measures of directional density (21],

the eff iciency of the procedure would have been diff icult to judge.

Although this study is oriented exclusively toward economic

equilibrium calculations, many of its techniques can be adapted to the

computation of general parametric fixed points. The relevant parts for

this purpose are the fundamental algorithm of Chapter 2 and the dynamically

defined manifolds and control heuristics of Chapter 4• Parametric fixed-

point problems may actually be easier to solve than the economic models

considered here because of greater regularity in the labeling.

13

L~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ui~~~~: -
~~~~~~~

.—-. ~~ .~.... —~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ • .



- - - -

1.3. Notation and Conventions

The terminology and elementary mathematical tools used in this

study are hybrids of those found in the literatures of mathematical

economics and opera tions research . The influence of the latter field

is apparent in the heavy use of vector and matrix notation. The main

purpose of this section is to explain the symbols, conventions, etc.,

which differ in some respect from standard usage.

The general setting of the study is (n+l)-dimensiona l Euclidean

space Rfl+l, where n 
~ 
0. The axes of ~~~~ are indexed 0, 1, ... , n .

Vectors in ~~~~ are denoted by lower case Greek and Roman letters. No

notational distinction is made between row and column vectors, but the

general rule applies throughout that all vectors are column vectors

unless they pre-multiply a matrix or another vector.

The components of a vector x in R
n41 

are denoted x(i) for

0 < i < n. If a is a nc.t-~~upty subset of (0 , ... , n) with Ia !

members, then x(a) denotes the vector in R ’~~ whose components are

x( i) for i E a. A subscript on a vector or any other object im~rely

uistinguishes that object from others denoted by the same symbol. A

superscript on a vector or any other object indicates the position of

the object in a sequence. Thus the symbol x~(i) denotes the i-th

component of the k-th term of the j-th sequence of x ’s. A single

exception to this rule occurs in Chapter 5 where the continuous parameter

t appears as a su perscr ipt.

Vectors in the canonical basis J of ~~~~ are denoted e.
n+l 3

for 0 < j < ci. Whenever ~~~~ is factored into components R
m.I.l and

canonical vectors for these subspaces will be denoted by the symbols

lii. 
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f and g respectively , with no subscripts to distinguish along which dimen-

sion each vector lies. The identity matrix of any dimension will be

denoted by the let ter  I. The letter e will denote a vector all of

whose components are I and whose dimension is determined by context.

Pre-multiply ing a vector by e merely sums the components of that vector.

Three order relations in ~~~~ are used in subsequent chapters.

tt-4-1For x, y in R

(a) x < y means x(i) <y(i) for all coordinates 0 < i <ci;

(b) x < y means x <y but x y;

(c)  x << y means x( i) < y ( i) for all coordinates 0 < i < n .

If x = 0, then y is said to be non-negative, semi-positive, or str ic t ly

positive according to (a), (b), or (c).
The positive and negative parts x+ and ~( of a vector x in

n+lR are def ined by

(x(i) if x(i) >0
(a)  x~(i)  =

( 0 , if x( i)~~~ O

— 
( —x ( i) , if x( i) < 0

(b)  x ( i )  =~~~
( 0 , if x( i ) > O

where O < i < n .

The sign of a vector x in Rn-fl is def ined by

( 1 , if x( i ) > O

(sgrz x)(i) = 0 , if x( i) = 0

~ — l  , if x(i) < 0

for O < i < n .

15
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All algebraic operations and order relations in Rfl+l have natural

extensions to the power set of If the symbol * denotes addition,

subtraction, or inner product and A,B c ~~~~~ then A * B is the set of

all objects a * b where (a,b) € A x B. Similarly if * deno tes one

of the order relations in R~
i+l
, then A * B is true iff a * b hold s for

each (a,b) in A x B.

Some additional operations on subsets A,B of R1
~
+l include:

(a)  A - the non-negative vectors in A;

(b) card A - the cardinality of A;

(ci) cony A - the convex hull of A;

(d) aff A - the affine hull of A;

(e) ~05 A - the convex cone generated by A;

(f) A\~B - the set theoretic difference of A and B.

Convex polyhedra are sets formed by intersecting a finite number of

closed halfspaces of ~~~~ The facets of a convex polyhedron are the

maximal convex subsets of the relative boundary of the polyhedron. A

special class of convex polyhedra used extensively in Chapter 4 is the

class of i-dimensional simplices for 0 < 3 < n . A 3-dimensional

simplex o is the convex hull of j+l. affinely independent points

x0, ..., called its vertices. Such a simplex 
~ is denoted by the

(j+l)-tuple (x0, ... , x
3
) , which implies an ordering of the vertices.

A face of o is the relative interior of a simplex determined by a

(possibly improper) subset of its vertices. (Note that faces are rela-

tively open while facets are relatively closed .)

~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~ ____  _ 
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A collection of (n+1)-simp lices constitutes a triangulation of

some subset of ~~~~ if the faces of all simplices in the collection

partition the given subset.

The standard n-dimensional simplex (e0, ... , e~) will be denoted

by the letter S, or if the val ue of n needs to be made explicit, by

the symbol S~ . If T is an interval, then facets of the product set

S x T which are extensions of facets of S are denoted by F~ , where

n+lis the unused dimension of R

The se t An+l consists of all vectors in R~~
1 whose components

are ±1. The symbol !
n÷l 

denotes the group of permutations on

(0, 1, ... , n) .

If a is a f inite ordered subse t of Rk consisting of ci elements

v0, ... , v~~1 
and L is any mapping from Rk to R

m
, then L(a) is

the (su~xi)-rnatrix whose columns are L(v0), ... , L(vn..1). 
The collection

of all mxii real matrices is denoted by RmxiI. Elements of a matrix

mxiiA in R are denoted by A(i,J), rows by A (i,.), and columns by

A (.,J).
Lexicographic linear inequality systems are needed in the development

of the f undamental algor ithm in Cha pter 2. The usual lexicograp hic

ordering > in R’~ is extended row-wise to Rm~~ in the same way that

the usual non-negative ordering > in R’ is extended to R
m
. A conc ise

account of the fundamentals of lexicographic linear inequality systems

appears in Section 1.2 of (6) .

A metric topology is induced on ~~~~ by one of three equivalent

norms :

- 
- I 

—

- -
-
~~~~~~~ 

- 
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(a) i!xiI~, = rnax~ Ix( i) I;
(b )  liX i l l = Ix(O) l + ... + Ix( n ) i ;

2 2 1/ 2
(c i )  11xi12 = (x (O)  + ... + x( n) )

Observe that for x in ~~~~~ llxii~ ~~~ 0x 112 .~~~ i1x111. Also note that if x

is partitioned into (x 1,x2), then 11x1i 1 = 11x 111 1 4- 1ix 2 111. H~ lder ’s

inequality ~xy~ < ~~~ 11y111 is used repeatedly in Section 3.5 .

If A,B are subsets of and I~ lI~ is one of the norms defined

above, then dist~ (A ,B) = in fC iI a -b iI ~ : (a,b) € AxB) .  The definition

extends naturally to the case where either A or B is a point.

Similarly define diam~ P. = su~( Iia-b Ii~ : a,b € A).

Whenever a discussion involving norms, distances, or diameters is

insensitive to which norm is used, the subscript on ii li p’ 
dist~ , or

diam will be suppressed .

The symbol (a1’) represents an infinite sequence of objects

where 1’ implicitly ranges through the set of non-negative integers Z .

If (a1’) is a sequence of subsets of ~~~~ and x € R~
4-1
, then at’ .~.

means that diam(a1’ U (x)) -*0 as k —~~~. If n = 0 then at’ —3- ~-~ means

that ~~ eventually leaves every interval ( -co , N] for N in Z~ .

Much of the analysis in this study is conducted with correspondences,

i.e., mappings from R2 to (R~~
l
)
*
, the collection of non-empty subsets

of R~-f1. Two regularity concepts generalize the usual notion of continuity

to correspondences:

(a) Upper semi-continuity : A correspondence ~ : R
2 Rfl~

i
)
* is said

to be upper semi-continuous (u .s.c .) jff ~
k -+x  € R~ , yt’ €

18
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k n-s- I.and y —sy € R Jotntly imply that y € Z~(x). The upper semi..

continuity of a correspondence is equivalent to the correspondence

having a closed graph.

(b) Lower semi-continuity : A correspondence ~ : R2 -. (R~~
]
)
* is said

to be lower semi-continuous (l .s.c.) iff xt’ -*x € R 2 and

k k ky € ~(x)  joLcitly Lmply that 3 y € L(x ) s.t. y -+y.

A correspondence which is both u.s.c. and l.s.c. is said to be

continuous . The notion of uniform continuity is extended to correspondences

in Lennna A .5 and Definition A .6. The reader should examine A.6 before

reading the proof of Theorem 3.5.ls..

A concept from metric space topology called the Lebesgue number of

a covering is needed at two or three points in the analysis. If CIJa}a€a

is an open covering of a compact metric space X, then there exists a

~ > 0 such that any subset A of X whose diameter is less than ~

lies in some Ua. Any such constant ~ is called a Lebesgue number of

the covering

Chapter 3 contains many integer intervals of the form 1+1 < 3 < J .

Whenever I = J, this interval is defined to be the empty set 0. In

this case any summation indexed by the interval, such as 
~~~I l  y(j),

is defined to be zero.

The term “algorithm” is used in this study to describe any iterative

computationa l proced ure, whether or not the procedure terminates after a

finite number of steps.

19
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The body of th is disser tation is organ ized into cha pters, sections,

and items within sections. Three levels of indexing are used to keep

track of these entities, e.g., 3.2.5 refers to item 5 in Section 2 of

Chap ter 3. Figures and tables are indexed independently of the other

items in each section. An exception to these rules is Appendix A, which

contains no sec tions.

References are designated by enclosing the entry number in square

brackets, e.g., (121.

20
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CHAPTER 2

THE FUNDA~~NTAL ALGORITHM

This chapter is devoted to the development of a special type of

search algorithm used subsequently for constructive proofs and for actual

calculations . The algorithm is a modest generalization of the one appear-

ing in (8]. There are two main differences between the algorithm of (81

and the one presented here. First, the labels here have an extra degree

of freedom both in their range and their domain. Second, the labels here

form a convex cone containing an arbitrary vector rather than a convex

hull containing the origin. The extra degree of range freedom necessitates

an additional assumption on the labeling and the pseudomanifold to insure

boundedness of the linear inequality systems formed by the labels.

Roughly speaking the algorithm steps through a special type of

grid called a pseudomanifold. The path that the algorithm follows is

determined by vector-valued labels attached to grid points. The labels

and the grid points contain the information needed to construct an approx-

imate solution to some underlying problem. In subsequent chapters a

portion of the path generated by the algorithm will be used as an approx-

imation to some equilibrium graph.

2.1. Labelings of S x tO ,øo) .

The geometric setting for the fundamental algorithm and all sub-

sequent theoretical and computational work is the cylinder S x (o,~).

The factor S will house relative commodity prices and revenue flows,

21
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and the factor (O,oo) a function of the economy index. Points in S x (0,oo)

are denoted interchangably by the letter v and the pair (s,t) where

s € S and t € (0,~ ). Figure 2.1.1 depicts two versions of S x [o,~o).

~l X (0 ,co) x [ O,oo)

Figure 2.1.1

Note that S x (O,oo) has n-s-2 facets, namely the base S x (0) and

the n-i-I walls F
~ 

for i = 0, 1, . . ., n . The projection of S x (o,~’)

onto the (O,~) factor is denoted by p2.

2.1.1. DEFINITION. An arbitrary mapping L : S x (O,co) -*R~
4-1

is called a labeling of the cylinder S x [0,oo).

Let L be a labeling of S x (O ,co) and p be an arbitrary vector

n-s-lin R

2.1.2. DEFINITION. A set C c S x [O,~o) is said to be (L,p)-

complete iff p € ~05 L(C).

I

22
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2.1.3. DEFINITION. The pair (L,p) is defined to be proper iff

(a) the vertex set of S x (0) is (L,p)-complete;

(b) no facet of S x (0,co) other than S x (0) is (L,p)-complete.

The (L,p)-coinpleteness property serves as the steering mechanism for the

fundamental algor ithm. Beginning with S x (0), the algorithm generates

an infinite sequence of (L,p)-complete subsets of S x [0,~ ) by stepping

through the grid structure defined in the next section.

2.2. Abstract Pseudomanifolds on S x (O,oo)

The fundamental algorithm like most general purpose fixed point

algorithms operates on a special type of grid over the domain of interest.

Such grids are variously known as triartgulations, simplicial subdivisions,

or simplicial complexes . An algebraic generalization of these structures

specially tailored to the needs of the fundamental algorithm is defined

below.

Let be a collection of subsets of S x (O,oo) of cardunality

n-+-2. For i = 0 and i = n let = (a : a c r € and card a = i-i-I).

Elements of K°, K~
i and are called abstract vertices, abstract

n-simplices, and abstract (n-s-l)-simplicies respective ly. If a C T where

a € and -r € ~~~~ then a is called an abstract facet of c .

2.2.1. DEFINITION. is defined to be an abstrac t pseudo-

manifold on the cylinder S x [O,oo) if f the following four conditions

hold :

23 
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(a) The vertex set of S x (0), denoted a°, belongs to K~ and is the

only n-simp lex of K21 contained in S x (0);

n
(b) Each a tn K is a facet of precisely one or two t in K ;

ii . n-s-I
(ci) A simplex a in K is a facet of prec i.s ley one r in K if f

a is contained in a facet of S x (O,oo);

(d) For each t in (O ,oo) only f initely many a in K~ meet S x (O,tJ .

A simple example of an abstract pseudomanifold on S1 
x (O,oo) appears in

Figure 2.2.1. The vertex set of each triangle yields one (n÷l)-simp lex,

the endpoints of each side of a triangle yield an n-simplex, and each

vertex of a triangle constitutes an abstract vertex.

x~~~~~~~~~~~~~~~~~~xx
/\ /\

Figure 2.2.1. Abstract pseudomanifold on S
1 x [O,

co)

Beginning with a° the fundamental algorithm generates a sequence

of (L ,p)-complete n-simplices in K21. Given any in the sequence,

is for med by rep lacing a vertex of with a vertex taken from

• 21i
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one of the (n+1)-simplices containing a
k
. Condition (a) above allows

the algorithm to start from a°, conditions (b) and (c) keep the algorithm

going, and condition (d) insures that the algorithm will eventually climb

arbitrarily high in the cylinder .

2.3. Very Complete Simplices and Adjacency

Only one ingredient in the fundamental algorithm remains to be

spec if ied, namely how to select a vertex of at’ for re placement when

is transformed into a1’~~. The selection is determined by a linear

inequality system involving labels on the vertices of Ort~. The condition

that must ultimately be satisfied is that ~~~~ be (L,p)-complete.

Unfortunately this condition alone will not identify a unique dropping

vertex of ak, and without uniqueness the algorithm might cycle. Further-

more, some condition on the labeling L is required to insure that the

linear inequality systems used for vertex selection are bounded . The

first difficulty is overcome by an extension of the notion of (L,p)-

completeness to lexicographic inequality systems. The second difficulty

requires an additional assumption.

2.3.1. DEFINITION . An n-simplex a in K~ is said to be (L , p)-

very complete iff the lexicographic linear inequality system L(a)Y = (p ,I) ,

Y > 0 has a solution.

ii 
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2.3.2. ASSUMPTION. (L,p) is a proper pair . (This and all othe
r

assumptions remain in effect throughout the 
current section.)

2.3.3. LEMMA . a° is (L,p)-ver)’ complete.

Proof: The system L(a
0
)y = p, y ~ 0 

has a solution y° according to

2.1.3(a). If the columns of L(a°) were linearly dependent, 
the above

system would possess a solution y with at least one zero component. By

2.1.3(b) this cannot occur, so L (a°Y ’ exists and y
0 

= L(a°)~~P 
>> 0.

Hence (L(a
0
~~

1
P, L(a

0
)~~) ~ 

0 and L(a
0
) ?~ = (p ,I]. 0

2.3.ls.. ASSUMPTION. For each t in K214-l the linear inequality

system L(T)y = p, y > 0 is bounded.

2.3.5. LEMMA. Each r in Ku - i has either zero or two (L,p)-

very complete facets.

Proof; Write -r (v0, ..., v21+1
) . Consider the system

(2.3.6) L(T)Y = [p ,IJ , 
I> 0

where ~ € R +2
~~~

21+2). A facet a = ~~(v~ ) is (L,p)-verY complete

if f 2.3.6 has a solution which does not 
use the j_th column of L(T).

Since (p ,fl has full row rank, any solution to 2.3.6 
must use at least

n+1 linearly independent columns of L(t). Hence there is a 1-I

26 
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correspondence between (L , p)-very complete facets of r and feasib le

bases of 2.3.6.

Given a feasible basis of 2.3.6, another feasible basis may be

constructed by lexicographically pivoting on the unused column of L(r).

Such an operation will drive a column from the old basis because of

Assumption 2.3.ls , and the leaving column will be unique since n-s-I columns

are used in every solution of 2.3.6. Clearly the old basis and new basis

are the only feasible bases of 2.3.6.

The proof is completed by observing that 2.3.6 is either infeasible

or has a feas ible bas is. 0

2.3.7. DEFINITION . Two distinct n-siniplices of 1(21 are said to

be adjacent if f they are both facets of some (n-s.l)-simplex in icn+1.

2.3.8. LEMMA . is adjacent to exactly one (L,p)-very complete

n-simplex in K21. Every other (L,p)-very complete simplex in 1(21 
is

adjacent to exactly two (L,p)-very complete sinuplices in Kn.

Proof: By 2.2.1(a) a° belongs to Kn, and by 2.2.1(c) a° is a facet
- 0 n-sd 0 .of precisely one (n+ 1)-simplex -r in K . By Lemma 2.3.3 a is

(L,p)-very comp lete, hence by Lemma 2.3.5 r° contains exactly one

other (L,p)-very complete facet.

Now suppose a is an (L,p)-very complete simplex distinct from

a°. By 2.2.1(a) a does not lie in S x (0), and by 2.1.3(b) a does

not lie in any other facet of S x (O,oo). Hence by 2.2.1(b) and 2.2.1(c)

27
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a is contained in precisely two (n+l)-simplices of 1(~~1• By Leimna

2.3.5 each of these (n+ 1)-simplices has one (L,p)-very complete facet

other than a. 0

2.I~. The Algorithm

The machinery has now been assembled to formally state the funda-

mental algorithm. The statement consists of a starting n-simplex and an

- induction principle for generating successive n-simplices. An argument

is then required to guarantee that the algorithm cannot cycle. The anti-

cycling argument is based on the well-known Lemke-Howson graph principle .

Let (L,p) be a proper pair and let 1(21+1 be an abstract pseudo-

manifold on S x [0,co) with facets K21 and vertices 1(0• Assume (L,p)

and ~~~~ jointly satisfy 2.3.li. Define a sequence (0
1o
) of adjacent

(L,p)-very complete n-simpices of K
21 as f ollows :

k 0: Let a° be the vertex set of S x (0,øo). a° is (L,p)-very

complete by Lemma 2.3.3.

k 1: Let a1 be the unique (L,p)-very complete simplex of K21

adjacent to or0. Such a a’ exists by Lemma 2.3.8.

0 1 k—i
Ic> 2: Suppose a , a , • . . , a have been s pec if ied and are adjacent

k-land (L,p)-very complete. By Lemma 2.3.8 a is adjacent to

k 2two (L,p)-very complete siinp l ices of 1(21• One of these is a -

kDefine a to be the other.

28
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2.Ii . 1. THEOREM. The sequence (a1’) is distinct.

Proof: Clearly the finite sequence or°, ..., a
k_ I  

is distinct for k = 2.

Suppose it is distinct for some k > 2, but that ak coincides with one

of the an for 0 < i < k-l. The definition of a” implies that a
k_i

is adjacent to at and that i < k-2. Since a’ is the only (L,p)-very

complete simplex adjacent to a° and k-l > I, it follows that i > 0.

But if 1 ~ L ~ k-3, then o~ is adjacent to the distinct n-simplices

i— l i-s-l k-l
a , a and a , contradicting Lemma 2.3.8. The theorem follows

by induction. 0

2.1~..2. COROLLARY. The projection of (a1’) onto (O ,OQ) diverge s

to +~~ .

Proof: In view of the preceding theorem and 2.2.1(d), the algorithm must

eventually vacate every truncated cylinder S x [O,tl . Hence p
2

(a l
~) ~~~~~~~~

as k— ~oo. 0

A possible realization of the fundamental algorithm in the pseudo-

manifold of Figure 2.2.1 appears in Figure 2.4.1. For each 1-simp lex

a”, the succeeding I-simplex ak-fl is constructed by adding to ak the

vertex opposite at’ in the new triangle containing a1~, and then by

dropp ing an old ver tex from ar’. If S is regarded as a pr ice s imp lex

and t as an economy index, then a portion of the path swept out by (a1’)

will be used to approximate the equilibrium graph of a family of economies.

29
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F igure 2.Ii- .1. The fundamental algorithm in S
1 ~ (O,oo)

S i
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CHAPTE R 3

THE ECONOMIC MODEL

This chapter introduces and analyzes the indexed family of CRS

competitive economies which serves as the basic economic model of the

study. The family extends Scarf’s original Walrasian model (13] in

several ways. The individual economies, for examp le, admit unbounded

multi-valued demand correspondences, uncountable production activity sets,

and multi-level tax systems of the form introduced by Shoven and Whalley

[191. More importantly, the economies are linked together into a continuum

in which every economy is a deformed version of every other one.

The analysis of the economici model progresses through four stages

of develo pment. First, the components of the indexed family of economies

are defined and discussed. Nex t, a minimal set of assumptions is intro-

duced so that the fundamental algorithm of Chapter 2 can be adapted to

the model. Then, under stronger but more economically meaningful assump-

tions, the path generated by the algorithm is shown to cluster around a

connected component of the equilibrium graph of the family of economies.

F inally , with the aid of two additional assumptions, a finite approximation

theorem is established.

3.1. Comp~onents of the Model

The basic economic model consists of a family (
~
.(t))t€T 

of CRS

Wairas ian economies indexed by a real interval T. Generally T will

denote the unit interval [0,1) or the haifline fO,oo). Each economy

e( t)  in the family possesses the standard attributes of a general

31
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competitive economy, and in addition contains a number of revenue collec-

tion and distribution systems of the form introduced by Shoven and WhaI.ley.

The results of Shoven and Whalley are extended to a potentially wider

class of revenue functions and to computation with multiple revenue systems.

Although non-tax realizations of the revenue systems are conceivable (e.g.,

dividend distribution), a tax interpretation will be maintained here.

Three types of agents participate in each economy -_ consumers ,

producers , and revenue handling agents. Consumers sell their labor and

resource holdings, and purchase goods and services in such a way as to

maximize satisfaction subjec-t to the restriction tha t expenditures plus

tax payments must not exceed endowment income plus revenue transfers.

Produc ers purchase labor and raw mater ials and sell f inished goods and

services in such a manner as to maximize after tax profits. Revenue

handling agents (usually government authorities) collect taxes from pro-

ducers and consumers and redistribute the revenue among consumer groups.

Since real governments spend money as well as collect it and give it away,

they are often modeled both as consumers and as revenue handling agents.

The detailed characteristics of the economic agents are suppressed

in this chapter, and instead their behavior is sunuinarized in terms of

market aggregates. This approach permits more generality and a neater

mathematical development. Examples of consumption sets, utility functions,

individual endowments, tax rates, etc ., which lead to the hypothesized

market aggregates will be presented in Chapter 5.

Every economy in the family (e(t))
~ €T contains ms- I commodities

indexed 0, ..., m (m > 0) and n-rn revenue systems indexed tn-s-I, ... , 21

32
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(a > un). The commodities are traded at prices it in R~
s-1

, and the

revenue systems are operated at levels r in R m . Because all agent

responses are required to be positively homogeneous of degree zero in

prices and revenue levels, these parameters may be normalized so that

(it,r) € S. The family of economies may thus be considered to operate on

S x T. Points in this cylinder will be denoted as v = (s,t) = (tt , r , t)

where s = (it ,r) € S and t € T. The t coordinate in (n,r,t) desig-

nates the economy e(t) to which (it,r) corresponds.

The formal specification of (e(t))
~~

._T is completed by assigning

to each economy ~.(t) the following five components:

(a) A vector w (t) in of aggregate initial endowments.

This vector is the sum of all consumers ’ initial commodity holdings.

Positive components of w(t) correspond to surpluses and negative compo-

nents to deficits, hence the net market value of w(t) at prices it is

itv(t). -

(b) A market demand correspondence ~~( .
,t) : S .~+ (R

t
~
sd
)
*
, positively

homogeneous of degree zero in (it,r). This correspondence expresses total

consumer demand for all commodities at prevailing prices ,t and revenue

levels r. It is presumed defined even when some or all prices are zero,

although such values need not depict actual consumer behavior (see Section

5.1). The dependence of ~~~
- on r reflects the influence of revenue

transfers on consumer purchase decisions. Positive components of ~ in

~ (t ,r,t) correspond to commodity purchases and negative components to

sales , hence the cos t of ~ at prices it is ire .

33

- - ~~~~~~~~ -~~~ : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~



(c) A non-empty subset 8(t) of R~~
1 containing non-slack unit

- production activities. Vectors b in 8(t) indicate technically feas ib le

input-output combinations. Each producer in the economy owns and operates

a subset of the activities in 8(t), but since all production is CRS, the

sup posedly independent producers behave as if they were one consol idated

producer. Positive components of b correspond to outputs and negative

components to inputs, hence given prices it, the before-tax prof i t  earned

from operating b at unit level with market prices it is itb .

In addition to 8(c) each economy is assumed to have availab le

rn-s-i unit disposal activities 
~~~+1• 

Hence the total set of unit pro-

duction activities available to economy &(t) is a(t) = 8(t) U

Feasible production plans are constructed by selecting a number of unit

activities from aCt) and operating them at non-negative levels. Hence

the set of feasible production plans ~or eCt) is the convex cone

pos a(t). Any production plan ~ in pos a( t) may be expressed as

(3.1.1) = ~~~~ •. .  

~~M 
bM l  

•. .  b~~)y

where N > 0, -l ~~~ M ~ N , y € R~~
1
, f~ € for  0 < j  < M , and

b~ € j3( t) for M-s-l < j  <N . The before-tax profit realized from executing

plan ~ at market prices it is

M N
= - ~ itf~ y ( j )  + 5~. itb~ y (j )  .

j=O j=M.s-l

31i.
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(d) A consumer tax function

U ~~(it ,r , t) x ((it ,r ) )  _.S~R
n_m

(it ,r) € S

For each price-revenue pair (ut ,r) in S and each consumption pattern

~ in ~ (it ,r,t), Ø(~ ,it,r,t) is the vector of aggregate tax payments made

by consumers to the n-rn revenue systems of economy ~(t ) .  Each component

of 0 corresponds to a separate revenue system. As the notation suggests

consumer taxes may depend on which demand point is selected if de nands

are multi-valued. The breakdown of demand among individual consumers is

immaterial, however (see Section 3.6 for an extension of the model which

recognizes this distinction).

n-rn
(e) A producer unit tax function r(.,.,t) : 8( t)  x S — *R

homogeneous of degree one in (it,r). For each price-revenue pair (it ,r)

in S and each production activity b in 8(t), r(b,ut,r,t) is the

vector of tax payments made by producers to the n-rn revenue systems of

economy ~~(t) whenever activity b is operated at unit level. Each

component of r corresponds to a separate revenue system. Total producer

taxes are determined by taking the same linear combinations of unit taxes

tha t are taken to construct feasib le production plans from unit activities.

Thus the vector of aggregate taxes assessed against the production plan

~ defined in 3.1.1 is 
~j=M÷l 

r(b~,it,r,t) y(j). Slack activities

incur no tax liability .

The tax liability of a production plan may depend on the way the

plan is expressed in terms of unit activities. For this reason each

35
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prod uction plan ~ in pos c(t) must be accompanied by a particular

representation whenever the plan appears in a tax context. The tax

liability is unaffected, however , by the combination of producers which

implement the plan. Hence the formulation does not cover the situation

in which two producers with different tax rates operate the same unit

activity . A straightforward extension of the model, however , can handle

this case (see Section 3.6).

The dependence of 0 and r on (it,r,t) will frequently be

suppressed in subsequent sections by abbreviating Ø(~~,,t,r,t) and

r(b,it,r,t) as Ø(~) and r(b) respectively.

3.2. Definition of Equilibrium Graph

The concept of equilibrium for each economy ~( t )  is essentially

the same as for a conventional competitive economy. Consumers maximize

utility subject to a budget constraint, producers maximize after tax

profits, and all markets and revenue systems clear. The concept of equi-

librium graph for r!’.e family (
~
.(t))t€T 

is a natural extension of

equilibrium for a single economy. An equilibirum graph consists simply

f tnose points (it*,r*,t) in S x T for which (it*,r*) is an equilibrium

price-revenue system for economy e(t). Supply and demand imputations

accompanying equilibri um price-revenue pairs have been excluded from the

definition of equilibrium graph for sake of conciseness.

:1 36
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3.2.1. DEFINITION. The triple ((lt*,r*), ~*, ~*1 where

* * * *(x *, r*) € S; it* ~ 0; ~* €~~~(i t*, r*, t); and ~* = ~~~~ ~~M* b~~+l
...bN*ly*

where N* ~ 0, -l ~~ M~ ~ N*, y* € ~N*-s-1 € for 0 
~ 
j ~

and b £ 8(t) for W’-.s-l < j <N* is said to be a competitive equilibrium

for economy e(t) iff

(a) ~* = ~* ~s. w(t);

(b)  r* = ~~ r(b*, uc*, r-*, t) y*(j) + Ø(~~~*, it*, r*, t);
j=M*~s-l

N
(c) it*~ * - e ~(b , ut*, rsf , t) y*(j) > x*~ - e r(b~ ~r*, r-*, t) y(j)

j =M*+1 j =M.s-l

for every ~ satisfying 3.1.1.

Relative equilibr ium prices make little sense unless at least one price

is positive. In the standard general equilibrium model relative prices

lie on S and hence cannot all vanish. But here (it ,r) lies on S so

the condition ~t* ~ 0 must be added. Condition (a) requires that supply

equal demand in all commodity markets. Condition (b) requires that

revenue disbursements equal gross tax receipts in each revenue system.

Condition (c) requires that producers maximize after tax profits .

Consumer utility maximization is implicit in a Walrasian demand correspon-

dence. Walras Law for will be stated in Section 3.Ii..

3.2.2. DEFINITION. The set of all (i t*, r*, t) in S x T such

that (,t*, r*) is an equilibrium price-revenue pair for ~(t) constitute s

F the equilibrium graph of the family (&(t))t€T .

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
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3.3. The Economic Algorithm

Now that the economic model has been specified, the next step is to

invoke the fundamental algorithm of Chapter 2 to compute approximate

equilibrium graphs. This will be accomplished by der iving from the

economic model a labeling L of S x (o,~) and a vector p in ~~~~

such that (L,p) form a proper pair. Before the labeling can be defined,

however, a few technical restrictions must be placed on the economic

constructs introduced in Section 3.1. These technical restrictions will

be superceded by a set of economically meaningful restrictions in the

next section.

Thro ughout the present section the index set T is assumed to be

n+l(0,oo), and an abstract pseudomanifold K on S x [O,oo) is assumed

to be given.

3.3.1. ASSUMPTION . The initial endowments of all economies are

bounded above, i.e., 3 W € Rm.s-
~ s.t. w(T) ~ W.

3.3.2. ASSUMPT ION. The demand correspondences of all economies

are bounded below, i.e., 3 d € Rm~~ s.t. ~(S x T) > d.

- 3.3.3. ASSUMPTION . The comb ined production activities of the

economies spanned by any (n+l)-sirnplex -r in K21+l cannot generate any

outputs unless inputs are provided, i.e., V a0, ..., a~+1 in

the linear inequality system (a0 
... a 1l y > 0, y > 0 has only y = 0

as a solution .

38
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3.3.1~. REMARK. Since the disposal activities cannot be operated

at positive levels without consuming resources, it suffices to verify

the above condition for non-slack activities a0, ..., a2 1 1  in

3.3.5. REMARK. Since the linear inequality system in 3.3.3 is

homogeneous, every similar linear inequality system Ca
0 
... a21 1~y ? b ,

y > 0 is bounded for every b in R •

For each t in T let

(3.3.6) c(t) = ( I  + II W II~)e + d - w(t)

and

(3.3.7) e = c(t) + w ( t )

Then

(3.3.8) 9 >> 0

and

(3.3.9) Z(S,t) + c(t) >0

The last inequality follows from the definition of c(t) and from

Assumptions 3.3.1 and 3.3.2.

Now choose A in R
n_rn 

such that

(3.3.10) A >> 0 and eA < 1 .

Def ine p in R~~
1 by
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(3.3.11) p = I >> 0

The vector p will serve as the right hand side (RHS) of the linear

inequality systems in the economic version of the fundamental algorithm.

Enough structure has now been imposed on the family Ce( t) l~€~
that an economic labeling L of S x [0,~) can be defined.

3.3.12. DEFINITION. Define L : S x (0,ao) —sR~~~ by

e
j if s = (xt ,r) lies on a facet of S

and j is the position of the last

zero in the first run of zeros in s;

-b 1 if (it ,r) >> 0 and itb - e-r(b,it,r,t) > 0,
L(it,r,t) = J

I r(b)J where b € 19(t).

+ c(t)~ if (it ,r) >> 0 and itb - ey(b,it,r,t) < 0

LO(~)_r-sAi for all b € 19(t), where ~

In order that L be uniquely defined for each (ir ,r,t) in S x [0,ao),

a spec if ic b and a spec if ic ~ must be chosen in the second and third

cases. In practice some tie-breaking procedure such as lexicographic

minimization must be employed to prevent ambiguity in the evaluation of

L.

Points in S x [0 ,oo) which require the third case of the definition

of L are called demand-labeled points. Those falling under the second

case are called production-labeled points .

~i-0

L.L Li;-~ - *  
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Occasionally in subsequent sections it will be convenient to parti-

tion the label L(v)  into

[ L 1(v)
]

~~ L2( v ) J

where L1(v) € R”~
1 and L2(v) £ R

n_rn
. Similarly the canonical vector

will be partitioned into [
~] for 0 < j  < m and [

~] for

m 4 - l< j< n .

- The idea behind the L
1 

portion of the labeling is due to Scarf.

If some good is free then the label becomes the negative of the disposal

activity for that good. If no goods are free and some activity earns a

positive profit, then the label becomes the negative of that activity.

If no goods are free and no activity earns a positive profit, then the

label becomes a demand point. A technical difficulty arises when many

goods are free, but this is overcome by the manner in which e . is

selec ted.

The L
2 

portion of the labeling was or iginally conceived by Shoven

and Whalley. The idea here is that revenue flows can be made to balance

Just like commodity flows by extending the production labels to include

unit producer taxes and the demand labels to include consumer revenue

receipts net of taxes .

The groundwork has now been laid for the main result of this section .

Ii- l
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3.3.13. THEOREM. The pair (L,p) and the pseudomanifold

satisfy all the cond itions required for the successf ul opera tion of the

fundamental algor ithm, namely (L,p) is a proper pair and Assumption

2.3.li. holds.

Proof~ The vertices of S x (0) are (e0,O), •.., (e
5,O). 

The labels

corresponding to these vertices are e
n, 

e0, e1, ... , e 1 respectively.

Clearly the positive vector p lies in the cone spanned by these labels.

Hence is (L,p)-complete.

Now consider any facet of S x (0,~ ) other than S x (0), e.g.,

the facet F~ for 0 < ~ < n. The only possible labels for points in

F~ are the coordinate vectors e0, ..., en. Consider a point (s,t)

in F .. If I < j < n then the (j-l)-st coordinate of s exists.

Suppose s(j-1) = 0. Then s(j-l) cannot be the last zero in a run of

zeros since s(j) = 0. Suppose s(j-l) > 0. Then s(j-1) does not

appear in any run of zeros. In either case L(s,t) ~ ej..1. If J = 0

then s(n) cannot lie in the first run of zeros in s because s ~ 0.

Hence L(s,t) ,h e
5. Whatever the value of j, one of the coordinate

vectors cannot appear as a label for F~ . Since p >> 0, the facet F~

is not (L,p)-complete.

All that remains is to verify Assumption 2.3.~i. Let

n+ 1
-r = (v 0, ..., v2 1 13 £ K . By suitab ly order ing r the system

L(-r)y = p , y > 0 may be displayed as

42

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



-‘ 

_
-

~~~~~~~~~~~~~~~
_
~~~~~~~~~~ ~~~~~~

—--—
~—------

(3.3.14) [ 0 ~~~~ 0 
~H+l ~1 -b11 

... -5 ~J+l + c (t
~ s-i)

~~ 
g~ 

... 
~~ 0 r(b1~1) 

. - .  r(b3) ~~~J+l~ 
- r~~1 ÷ A

y l 
-

~~ ~n+l + c ( t 1) y2 
= 
[ 9

~~~~~~ 
0

~~n+i~ 
- r2 1 1 + A  y

3 L A

where y
1 

£ R~~
1
, y2 £ 

~~~~ y
3 

€ R~~
1
, y~ € ~~~~~~ and -l 5 H 

5 
I 5 3 5 n-s-I.

Any (y r, y2, y3, y4) satisfying 3.3. 1.li. must also satisfy

(3.3.15) 
~~~H+l 

-f1 
b
1 1  

... b
3j 

[ 

:; } > -e , y2 > 0, y3 ? 0

because of 3.3.9. By Remark 3.3.5 the set of (y2, y3
) satisfying 3.3.15

is bounded. Hence if y
4 

satisfies 3.3.14, the expression

+ ~~t3÷1) ~n+l 
+ c(t2 1 1)jy4 

is bounded. By 3.3.9 each vector

+ c(t.) for .1+1 < j < u.s-i is non-negative and contains a positive

component , so y4 must be bounded. The boundedness of (y 2,y3,y4)
satisfy ing 3.3.14 implies the boundedness of (g

0 
... which in

turn implies that y
1 

is bounded. Therefore Assumption 2.3.4 holds. 0

3.li. Limiting Behavior of the Algorithm

The theorem of the previous section guarantees the existence of

an infinite sequence of distinct, adjacent, (L,p)-very complete n-sirnplices

in S x [O,~ ). The connection between this sequence and the equilibrium
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graph of the family (e(t))
~ € T remains to be demonstrated. Unless

wore structure is imposed on (
~

( t)) t ..T and on the pseudouianifold

the sequence may well be economically meaningless. Furthermore the model

with T to,~) is not the model of ultimate interest. Rather it serves

as a tool for ana lyzing families of economies defined on T = [0,1].

These are the models toward which this study is primarily directed.

In this section enough restrictions will be placed on (e(t)J~ € (0, 1]

to insure that the fami ly possesses a non-void equilbrium graph. Then

(e(t))
~ € [0,11 

will be copied onto the cylinder S x Co ,~ ) in such a

way that the conditions of the previous section are met. The sequence of

n-simplices generated by the fundamental algorithm will then be mapped

back ~o S x (0,11, where the images will be shown to cluster around a

connected subset of the equilibrium graph of (e(t))
~ € tO,l1~

Throughout the remainder of this chapter the index set T is assumed

to be (0,11.

3.Ii- l. ASSUMPTION. Initial endowments w(t) vary continuously

in t.

This is the first of many assumptions stemming from the notion that

is generated by a continuous deformation.

3.4.2. ASSUMPTION. The market demand correspondence ~ satisfies

the following conditions :

(a)  is u. s.c . on S x T;

(b)  ~ ( v )  is convex for all v in S x T;

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Cc)  ~~(.,t) satisfies Walras Law for all t in T provided ~ >> 0,

i.e ., V ~ € ~ (x ,r ,t) , n~ + eØ(~~,1c,r , t) = i~w(t )  + er;

(d)  ~ is bounded from below on S x T;

(e) As (~t ,r , t) -. (it*, r*, t*) in S x T with (lt , r) >> 0, if

lim sup diam(Z(it,r,t) U (0)) = ~~, then lim dist(~~(i~,r,t) ,  0) =

Upper semi-continuity of ~ with respect to t is related to the

deformation interpretation of the model. Parts (b) and (c) and upper

semicontinuity w.r.t. (it ,r) are standard properties of demand correspon-

dences arising from utility maximization subject to a budget constraint.

Assumption (d) is regularly employed in conventional general equilibrium

models, e.g., (2] and (5 1. Unlike conventional treatments of the model,

however, no truncation arguments (or boundedness assumptions in the case

of Scarf [131) are required for the demand correspondences considered

here. This advance is made possible by condition (e) which rules out

pathological singularities of on the boundary of the price-revenue

simplex. As long as condition (e) is satisfied, global feas iblity

constraints will be automatically enforced by the algorithm.

3.4.3. ASSUMPTION. The non-slack production activity correspon-

dence ~19 satisfies the following conditions:

(a) 19 is continuous on T;

(b)  19 is a bounded correspondence.

Part (a)  reflects the deformation interpretation of the model. Part (b)

is a technical convenience and has no ef fec t  on production technology

since unit activities may be operated at any non-negative level.
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3.14.11. ASSUMPTION . For each t in T there exists > 0 such

that for all a0, ..., a21+i in a (T fl E t_E t, t÷.~~~] ) ,  the linear

inequality system (a
0 a

n+i
]y ? “, ‘ ~ 0 has on ly y = 0 as a

solution. This assumption captures the notions of continuity between

economies and realism of production technology. It says that the combined

production activities of economies sufficiently near a given econothy

cannot be operated at positive levels unless inputs are supplied.

3.Ii.5. REMARK. Analogues of Remarks 3.3.11- and 3.3.5 app ly to

Assumption 3.15. 14.

3.4.6. ASSUMPTION. The consumer tax function 0 satisfies the

following conditions:

(a )  0>0;

(b) 0 is continuous on U ~(s,t) x
(s,t)€ Sx T

(c) 0 vanishes when i~ = 0;

(d) 0 is affine on ~ ( s,t) x ((s,t)) for fixed values of (s,t).

Part (a) rules out the possiblity of tax revenue flowing from revenue

handling agents to consumers. Continuity w.r t. t in part (b) reflects

the continuity of change between economies. Part (c) relates the taxes

paid by consumers to the value of their transactions. Part (d) and the

remainder of part (b) are technical assumptions required for the main

existence proof. Note that (d) becomes superfluous when demands are

sing le valued . Despite these restrictions the function 0 encompasses

a wide class of possible tax schemes, inc luding all those proposed in

(15]. 

•
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3.11 .7. ASSUMPTION . The producer unit tax function r satisfies

the following conditions:

(a) r� O;

(b) r is continuous on U 19(t) x S y (t).
tET

(c)  r vanishes when ir = 0.

Part (a) permits tax revenues to flow from producers to revenue handling

agents but not vice-versa . This precludes the possibility of using r

to model direct producer subsidies but is necessary for technical reasons.

The t component of part (b) again reflects the deformation aspects of

(e(t)}
~~ET. 

The remainder of part (b) is a tech tcal assumption . Part (c)

relates the level of producer taxes to the value of producer transactions.

Some elementary consequences of the preceding assumption~ are con-

tained in the following leuma.

3.14 .8. LEIINA . The following sets are compact:

(a) 8(t) for each t in T;

(b )  /3 ( T);

(c)  C(T fl ( t _ E
t, 

t
~
s.E

~~
]);

(d)  U /3(t) x S x C t ) .
tET

Proof: Since is compact, part Cc) follows once 19(T (~ (t_c~, 
t+€

~~
])

is shown to be compact . But this set is Just U 8(u),
u€T flft_ c

~,
t
~
s.€
~
]

which is compact by Lemma A .l. Likewise 0(t) = U 8(u) ,
u E T f l ( t )

/3(T ) = U /3( u ) , and the union in (d)  are compact . 0 . -

u€T
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Now construct a new family of economies (e’(t’))t~E[o~~) 
by

letting e’(t’) = g( h( t ’) )  where h : (0,~ ) -4[0,ll is defined by

0 , 05t< 21

(3. 14.9) h(t) = t-i , 215 i S t ( i+1 and i even

is-.l- t , 21 ( i S t < i+l and i odd

for some I in Z. Figure 3.4.1 illustrates how h copies the unprimed

family of economies onto S x [O,oo) to form the primed family.

t=l 21+3

e( t)
t=0 21+2

t=l
t=l 

21+1

~(t)

t=O 21

~
( 0)

0
S x (O ,~~)

Figure 3.4.1. The family (~~~‘(t ’) )
- 

t € (O,ao)
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In view of 3.Is.l and 3.li- .2(d) the family

satifies Assumptions 3.3.1 and 3.3.2. Before Assumption 3.3.3 can

be verified, an additional restriction is required on the pseudomanifold

3. ls .1O. ASSUMPTION . K”~~ becomes increasingly refined as t

i.e., diain — sO uniformly in r € 1(
21+1 

as p2(T) 
-

~~~~~~
.

3.4.11 PROPOSITION. Provided the integer I in 3.14.9 is sufficiently

large, the family (& ‘(t ’)) t .€(O~~ ) 
satisfies 3.3.3.

Proof: The collection ((t_c
~, 

t+€
~~

) )
t~~~ 

forms an open covering of T.

Let ~ be a Lebesgue number for this covering (recall that T = [0,1]).

Choose I so large that for all -r in ~21+l satisfying p
2

( -r ) fl [2I,oo)~~0,

diam r < ~~~. Then for each r in there exists t in T such that

c T  fl (t_ E t, 
t+c

~
). In view of Assumption 3. 14.14, Assumption 3.3.3

holds for (~~~
‘(t ’))

~~~,€  (O,co)~ 
0

All the Assumptions of Section 3.3 have now been verified for

Hence the economic version of the fundamental algorithm

developed in that section can be operated with the primed family to

generate an infinite sequence (
~~~1

5 of distinct, adjacent, cmnpletely - 
-

labeled n-simplices in S x [O ,oo).

In order to analyze the implications of the sequence (ø~5 
for the

unprimed family of economies, it is necessary to map the sequence (0
k
)
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back to S x T via the function 1~ x h : S x (o,~) —.S ~ [0,11, where

- 
is the identity on S. Deno te by o~ the image of 0

k under this

k k
mapping. Assign to a the label system associated with o , and

denote this label system as L(a~)y
k 

= ~ 
~k ? 0.

The net effect of copying the unprimed family of economies onto

S x [o,~) and then transforming back to S x T is the same as if the

pseudomanifold 1(1~4l had first been mapped onto S x T by is x

and the development of Section 3.3 had taken place there. Hence expres-

sions 3.3.6 through 3.3.11 apply for the unprimed family.

Before stating and proving the main result of this section, the

k k  k
uniform boundedness of the label systems L(a )y = p, y > 0 will now

be established . The proof resembles the boundedness argument in Theorem

3.3.13.

3. ls- .12. LEMMA. Let t € T and S
t = ~~ € (ak) : p2(a)  C T

fl (t-.€~~, t4-ctl). There exist bounded sets ~~~ Z~ c R~ s-~ which contain,

respectively, every solution y to every linear inequality system

L(a)y = p, y > 0 for a in S~, and all vectors

I 1y ( j )
L O”~ )i

appearing in these system s .

Proof: For any a in the label system L(a)y p, y > 0 can be

displayed as
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(3.11.13) 
[ 0 0 

~H+l f
1 -b1~~ 

... .-b
3 ~J÷l c(t31)

0 0 r(b1~1) ~~~~ r(b~) ~~~~~~ 
- r~~1 ÷

A

‘yl... ~21
+c( t

21
) 

1 

y2 
— ~~ 

e
... Ø(~ 21

)-r~4Aj Y3 

— 

L A
.y14-

where y
1 € ~~~~ y2 E R H

, y3 
€ R3 1

, y4 
€ R~~

3
, and -15 H 5 15 .15 n.

Because of 3.3.9 any (y 1, y2, y3, y4) satisfying 3.11.13 must also

satisfy

1y2
(3. 14 . 111.) t

~~H+l 
~~~~ -f 1 b11 

... b~~] [ >-e  , y2 >o, y
3~~

O
y
3

By 3.3.8 and 3.ls..5 any system of the form 3.4.14 with matrix columns

taken from C(T Ii C t..€~, t+E
t

]) is feasible and bounded . Therefore the

hypotheses of Lenm~a A .3 are satisfied with ~ = (-9)  and

C = C(T fl (t -e~ , t+€
~~

])
, which is compact by 3.4.8(c). Hence there

exists a fixed bounded set containing all solutions to all systems of

the form 3.4.14.

The compactness of a(T fl (t-.€~~, t+
~~~~

)) and the uniform boundedness

of (y2,y3
) imply that [ I ~~~ + c(t~~1) 

... + c(t )]y
4 

is uniformly

bounded over all a in S~. 
(So, too, are each of the non-negative terms

(~ J + c ( t~ )) y ( j )  for .1+1 < j S n.) Using a graph projection argument

similar to the one in Lemma A .l, the set U ~(S ,t) + c(t) is readily
tET

seen to be closed, and by 3.3.9 this set does not contain 0. Hence

- 
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there exists a neighborhood of 0 with £ -diamater € > 0 which misses

the union. Any vector ~ + c( t)  in Z(S,t) + c(t) for t € T must,

therefore, contain a positive component of magnitu~s at least e, and

this places a uniform upper bound on the components of 74 satisfy ing

3.4. 13.

Since 0 and r are non-negative, the terms r(b1) 
for 1+- I. 5 j 5 

.1

and Ø(~ ~~ ) 
- r~ + A for J.s- 1. 

5 j  < n are uniformly bounded below over

all, systems 3.4.13 for all a in S~
. This fact together with the

uniform boundedness of y
3 

and y
4 

implies that both (g
0 

... g~~y1
and 

~~~~~~~ 
- r3 1  ÷ A  ... Ø~~~) - r +A 1y4 

are uniformly bounded over

all systems 3.4.13. The uniform boundedness of y
1 

follows from that

of the first expression, and the uniform boundedness of (O(~~ )-r~-sA)~ (J)

for .7÷1 5 j S n from that of the second. The set may be taken as

the cartesian product of the sets which uniformly bound y1, y2, y3
and y .  The existence of Z~ is assured by the uniform

boundedness of c(t~) y(j) and (A- r
i
) y(j) for 3+1 5 j 5

together with the uniform boundedness of the weighted labels containing

these terms, 0

The following theorem contains the principal. result of this section,

namely the clustering of the sequence (a
1
~) around a component of the

equilibrium gra ph of (e(t))
~ €T .

I -
~~~~ 

-

- _________
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3.11.15 . THEOREM. The set A of limit points of (a~5 in

S x (0,1] is a connected subset of the equilibrium graph of

and it meets both S x (0) and S x (1). Furthermore for each

(n*,r*,t) in A and each subsequence a
k 

~~~~~~~~ r*, t), an equilibrium

consumption plan ~* in E(s~*, r*, t) and an equilibrium production

plan ~* in pos a(t) may be obtained by taking linear combinations of

limit points of the labels L(a
k ), using weights which are limit points

of the weigh ts yk’

Proof: The proof is rather long and complicated, so it will be broken

down into a series of nine steps.

Step 1: A is connected and meets both S x (0) and S x (1).

Since the sequence (
~~~l5 c S x [0,oo) consists of adjacent n-simplices,

each 0
k conta ins one ver tex missing from Let ~

k denote the

image of this vertex under the mapping l~ x Ii. Then c learly the limit

points of (v
k
) coincide with the limit points of (a

k
) According to

Corollary 2.14.2, ~~(0
k
) —‘~~~~ as k —.~~~, and hence by Assumption 3.4.10,

diats — ‘0 as k —s~~. Therefore (~~~~~~) eventually crosses each slice

S x (i) for i € Z , and as i —s~~, dist((~~), S x (LI) —sO. Corresponding F

properties of the image sequence (u
k
) are jv1~~

1 
- v’~II —so,

dist(vk, S x (0)) -.0, and dist(vk, S x (1)) -.0. App lying Leuma A .14-

with X S x T, A S x (0), B S x ( I) , and (x
k
) = (v

1
5 yields the

desired result .
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Step 2: Extraction of convergent subsequences.

Let ~~~ r*, t) in A be given. Select a subsequence of (0
1
5,

f or convenience also indexed by k in Z~ , such that —, (~*, r*, t ) .

Since diam —, 0, the subsequence may be chosen so that

C T  11 [t-. €~ , t+€~ J . Write o~ as (vt, ..., v~) and consider

the label matrices L(ak) = [L(v~) 
... L(v~ ) 1.  For 0 5 j  S n and k

in Z either

(i) L1(v~) € (0),

(ii) L1
(v~) €

(iii) L1
(v~) € —0( T) , or

(iv) L1
(V~) € ~(S x T) + c(T),

Hence for each 0 
5 J 5 n, the vector L1(v~) must lie in one of the

above sets for inf initely many k in Z . In cases (i), (ii), and (iii),

the containing sets are compact, so every infinite sequence of labels

lying in one of them has a convergent subsequence within that set.

Beginning with j  = 0 and continuing until J = n, one may extract

successive subsequences of (0k) until there remains a subsequence, for

convenience also indexed by k in Z , such tha t for each 0 5 j 5
precisely one of the following four statements holds:

(a) L
1(v~) = 0;

(b) L1(v~) = f~( £ f €

(c) L1(v~) = -b~ —s- -b € ~/ 3( t ) ;

(d) L
1

(v~) = ÷ c ( t~ ) € ~~~~ r~, t~ ) + c ( t~ ) .
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The inclusion relation in (c) follows from the u.s.c. of 13. Later it

will be shown that the labels in (d) also contain convergent sub-

sequences .

By suitably ordering the elements of each one may assume that

(a) holds for 0< j 5 H, -

(b)  holds for U-i- i S j  < I,

(c)  holds for 1÷1 5 j  < J, and

(d) holds for 3+1 5 .1 5

where -l 5 H S I < 3 5 n. By extracting further subsequences of (a15,

for convenience also indexed by k in Z~, the following can be guaranteed

to hold :

(a ’) L2
(v~) = g~ g € for 0< j <H

Also, by definition of L2, K, and I

(b’) L
2
(v~) = 0 for H-s- l < j < I

By the continuity of r,

(c ’) L2
(v~) = r(b~) —s~~~(b ~~) for I-~-l< j < .1

(The symbol r(b) is an abbreviation for T (b , st*, r*, t).)

Since p2((a15) CT fl [t~
c
~, 

t÷€~ J , Lemma 3.4.12 insures that the

solutions 7k to the linear inequality systems L(a
k
)y
k 

= p, y ? 0

lie in a fixed bounded set, as do the terms ~~ y
k
(j) and Ø(~~) y

k
(j)

for .7+1 < j 5 n. Hence there exists a final subsequence of (a~5,

also indexed by k in Z , along which
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(e) ~~ yk(j) —.r € R~
i-1 for .7+1 < j  S n ;

(e ’) Ø~~
) yk( j )  ~~~~ € R~~

m 
for J+l < j< n

( f )  7
k ~~~~~* 

= [ ~~~ ] € R’~’~ , where y € R3
~

1 and y~ € R~~
3

y l

The end result of this extraction procedure is that along the final

subsequence (a15, the label systems L(a k)y k 
= ~ 

~k 
~ 
o converge

componentwise to the system

* * * *
I 0 ... 0 f ... f -b ...b

f 2  I ~~ H+l I 1+1 3 *
~~~~~~~~~~~~~ ~ * * * *

~ 
g~ ... 0 ‘•~~ 0 y( b1÷1) ... r(b3)

n rn f c(t) 1 * f~~1 
*

+ I ~ 1 + 1  ~ y( j) = 1  I , Y �°.
j =3-s-l L~ J J L”~~~i L A J

The remainder of the proof consists of showing that the triple
21 I 

*((~*, r*), ~*, ~*1, where ~* = and ~* - ~ f~ y*(j)
j =J-,- l ~ j =H+ l

+ ~ b y*(j), constitutes a competitive equilibrium for economy e(t).
j=I÷l

Step 3: ~t* f = 0 for H+l S j  < I;

~* b - e~(b~ ) � 0 for 1+1 < ~ 5 3

For each k in Z and H÷1 < J < ~ n~ fk = 0. Since
+ — — ‘ i i  j

and fk = f* ~~ follows tha t ~~ f
* 

= 0. For each k in Z andI I I +

1+1 5 j 5 3, the definition of L implies ~~ b~ - ey(b~) > 0. Letting

k —s~~ and invoking the continuity of r, this inequality becomes

.~~* b - er(b ) > 0.

U _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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Step 11.: J < n .

Suppose otherwise. In view of the previous step and Assumption

3.11 .7(a)

- 
x* b > ey-(b ) > 0 for 1+1 5 j  <3

Multiplying 3.11. 16 by (~t*, 0) and applying the first part of Step 3

yields

.1 
*

- ~~ j~*b
1

y *(j)  ~~~~
1=1+ 1

which is a contradiction since the RUS is positive and the LHS (left hand

side) is non-positive.

Step 5: After- tax profits in economy e(t) are maximized at prices and

revenue levels (~t*, r*) by the production plan

1 .7
~ f y*(j) + ~ b~~y*(j) ,

j =H+l j =LI-l ~

and these prof i ts  are exactly zero .

Since 3 <  n, there exists j ’  in (J+ l, ..., nJ such that V

k €  Z

k k k
L1(v 11) = 

~~~~
, + c(t11)

~~~

. .

~~~~~~~
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Let b in 5(t) be given . By the l.s.c. of 13 there exists a sequence

(b~ ,) such that b~ , € 5(t~ ,) and b~ , — .b as k —.~~~. By definition

of L,

~~~~ b~ , - er( b~ ,) 5 0 ,

so letting k -..~~~ yields

(3.4. 17) ~*b - ey(b) < 0

Now consider the arbitrary production plan ~ defined in 3.1.1.

At prices and revenue levels (it*, r*) the after- tax profttability of

~ is

M N
— ~ ~* f

1 
y ( j )  + ~~~ C~*b1 

- e-r(b
1
)] y(j) ,

j =O j =M-i-1

which is non- positive in light of 3.4 .17.

The results of Step 3 together with 3.11. 17 imp ly that the after-

tax profitability of each unit activity in ~* is zero . Therefore the

profitability of ~* exceeds that of any other production plan ~~.

Condition (c) in the definition of a competitive equilibrium has now been

verified.
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H 21
Step 6: ‘

~~ y*(j) = 0; ) y*( j) = I.
j=0 j=J+1

Multiplying system 3.4.16 by (g*,e) and applying the zero profit

results of the previous step yields

B -it. *

(3.4.18) ~~ y*(j) + ~ ( ( , ~* c( t) + - er*) y4f(j) + ~* + eØ.]
1=0 j=3÷l

- = i ~* 9 + a ~~ .

For 3+1 5 j < n the definition of L insures that >> 0, hence

Walras Law (3.4.2(c)) implies

k k k  k k . k k k k k
y ( j )  + eØ(~. .)  y (j )  = ~~ w (t1

) y (j) + erj y (j)

Letting k —i~~ this equation becomes

÷ e~~ = j~* w( t) y *(j)  + er~ y*(j)

Solving for ,t* w(t) y*(j) and rep lacing the last three terms in brackets

in 3.4.18 yields

H 21

(3.4.19) ~ y*(j) .i- (x *9 + e~ ) ~~ ~~( j )  = ~~~~ +
1=0 3=3+1

Now let q = sgn rh- . For sufficiently large k, q S sgn r~, and hence

qg~ = 0 for 0 5 j  S H. Multiplying 3.4 . 16 by (0, e-q\ and subtracting

the resulting equation from 3.4. 19 y ields

59
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3 21
- ~ (e-q) y(b ) y*(j) + ~~ ( (~c*9 + q~.) ~~ (j) 

- (e-q)
j=I+1 j=J+l

= ~*9 +

By the non-negativity of r and 0 this implies

21 21

(i~*9 + q~) ~ y*(j) 
~~ ~*e + c~ , or ~ y-*(j) > 1

j=J-i-l j=J+l

H
Combining this inequality with 3.4.19 implies ~~ y*(j) = 0. Dividing

j =0
3.14.19 by ,~*e + ~~ then establishes the desired result.

Step 7: The sequences (
~~

) for 3÷1 5 j S n contain convergent

subsequences.

Suppose (~~~,) is unbounded for some j € (3+1, ..., n). Then

there exists a subsequence along which j~~,~l— ~oo. According to

Assumption 3.4.2(e), the other demand points for 3+1 5 j 5 n

must also diverge to +~~ along this subsequence. Since ~~ ~k(J) _~~ *

it follows that for 3+1 < j < ~ 
~,k(1) — iO along the subsequence,

contradicting the fact that ~~ y*(j) = 1.
j =J-i.l kConsequently every sequence (

~~
) for .7-i-I 5 j S n is bounded,

and thus contains a limit point ~~~. By extracting a further subsequence

~f (0
k
) also indexed by k € Z , the sequences (

~~
) may be considered

to converge to their limit points, i.e.,

k * * *
~~~~ 

—,
~~~~~~ 

€ 
~~ (It  , r , t) for .7÷1 < j 5 n .
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The inclusion relation follows from the u.s.c. of Z. Since 0 is

continuous on its domain, it also follows that Ø (~ ) -4Ø(~., x*, r*, t),

henceforth abbreviated Ø(~~). The weighted label limits and

may now be factored into = y*(j) and j3 = Ø(~~) y*(j) for

3+1. 5 3 <fl .

Step 8: ~* ~ 0.

Suppose It* = 0. Then qr* = 1 (recall the properties of q

from Step 6). Also, Assumptions 3.4.6(c) and 3.4.7(c) require that

= 0 for 3+1 < j < 21 and r(b ) = 0 for 1+1 < j <3. Multiplying

system 3.4.16 on the left by (O,q) yields

21

(-l + q ~) ~ y*(j )=q~~,
j=3-i-l

which is impossible since y* > 0 and 0 < q~ < I.

Step 9: Verification of equilibrium conditions 3.2.1(a) and 3.2.1(b).
n

Since ~~ y*(j) = I and ~~(it*, r*, t) is convex, the demand
j =J+ 1

point

21 21

= = ~ ~* y*(j) . 4
1=3+1 ~ j=3+l

belong s to ~~(it*, ~~~ t). The first m÷1 equations of system 3.4.16

reduce to
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I 
*

~ f
1 
y*(j) — Y~ b~ y*(j) + ~* + c(t) = w(t) .i- c(t)

J=H÷l 1=1+1

Subtracting c(t) from both sides yields equilibrium condition 3.2.1(a).

Assumption 3.4.6(d) implies that

21 / 21

~ Ø(~~) y*(j) = ~~ , ~ y*(j)) = Ø(
~*)

j=J+l j=J+l

Thus the last n-m equations of system 3.4.16 become

*

~ r (b .) y*(j) + Ø(~ *) - r~ +~~~
J=I+l ~ 

-

Subt racting ~ from both sides yields equilibrium condition 3.2.1(b).

The proof of Theorem 3.4.15 is now c~imp1ete. 0

Figure 3.4.2 illustrates the relationship between the set A and

the equilibrium graph as a whole. The graph in the figure consists of

arcs AR, CDE, D1, GE, 3K and loop I. The set A may coincide with the

arc AB, with the arc CDE plus any subarc of DF emanating from D, or

~~~~~~~~~

D

C
A C (\H  

—

S 1 x (0 , 11

Figure 3.4.2. A complicated equilibrium graph.
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with the arc CDF plus any subarc of DE emanating from D. One would

expect equilibrium graphs encountered in practice to be much simpler than

the one illustrated here and hence more nearly coincident with A.

3.5. Finite Approximation of Equilibrium Graph

The purpose of this section is to show that an economically meaning-

ful approximation to the equilibrium graph of (e(t))~€ T can be constructed

kfr om a finite segment of (o ) whenever the diameters of the sets corn-

prising the segment are sufficiently small. Such approximations are

essential if the algorithm is to have any practical value, since c luster

points can rarely be computed . The role of the theorem in the previous

section is to insure that the approximations proposed below relate to

something which actually exists. Two additional restrictions on the

market demand correspondence are needed to guarantee certain desirable

properties of the approximations. These restrictions lead to regularity

conditions analogous to uniform continuity for and the consumer tax

function 0.
Recall from Section 3.li. the sequence (o

k
) of n-simplices in

S x [o,~) generated by the economic algorithm. Consider any block

S x (i, i-i-i] where 21 5 i. Since ~~(
k) 

~~~~~~~~~ there exists a last

simplex which meets S x (o , i] and a f i rs t  simplex fo l lowing

which meets S x fi+l, ~).

- 
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3.5.1. DEFINITION. The set Ai = U ~(0
k
) where ~(0

k
) is

k=k
the set of demand labeled vertices of ~~~ Is defined to be the i-th

level approximation to the equilibrium graph of

Two criteria must be satisfied before the finite set Ai 
can be

considered a reasonable approximate equilibrium graph. First A~ must

cover the continuum of economies, and second the price and revenue

components of points in A
i 

must induce economic behavior resembling

equilibrium. The economies may be considered well-covered when the

index of every economy lies c lose to a point in P2(A~). 
Economic

behavior resembles equilibrium when supp ly is c lose to demand and unit

profits are nearly maximized. The theorem below shows that for simplices

of sufficiently small diameter, the sets ~(0
k
) are non-empty, and

the price-revenue levels of points therein induce approximate equilibrium

behavior Co any desired accuracy. Thus by choosing i sufficiently large

(so that the diameters of the sets are sufficiently small), the

set A
~ 

can be made to approximate a component of the equilibrium graph

of (e(t))
~ € T  arbitrarily well. As a lways, however, with equation

solving techniques of this type, the location of the true equilibrium

graph can never be determined precisely unless extra regularity conditions

are imposed on the model.

The additional restrictions on required for the proof of the

approximation theorem are rather technical and non-intuitive. They are

motivated, however, by the consumption example discussed in Section 5.1.

Their main purpose is to induce a type of uniform continuity on ~~. Th is

is particularly difficult since may very well be unbounded (over

64
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a compact domain). It is, therefore, necessary to restrict to subsets

of S x T where its size can be controlled.

To this end let £(a) = Cv € S x T : dist~(~ (v), 0) 5 a). This

set is simply the projection onto S x T of the compact set formed by

intersecting the graph of with the closed 2 -ball of diameter a,

and is hence compact.

3.5.2. ASSUMPTION . For each a > 0 there exi sts a closed subset

.r(a) of £(a) satisfying

(a) .r( a) contains all points (It,r,t) in £(a) with ~t >> 0;

(b) is bounded on

(c) is ].s.c. on

3.5.3. ASSUMPTION. Diats Z(it,r,t) is bounded over ((it,r,t) € SxT

~ >> o).

The latter assumption is reminiscent of condition 3.4.2(e), and

in fact when comb ined with 3.5.2 implies that condition (see Remark

3.5.16). All other conditions and constructions of Section 3.Ii. are assumed

to remain in effect here.

3.5. 11-. THEOREM. Let ),~.i > 0. Then 3 B > 0 such that any j
n-simplex a in (ci

k
) and its associated label system 3.4.13 exhibit

the following pro per ties whenever diam
1 a < B.

(a) Demand-labeled vertices exist, i.e., .1 < n in 3.li .13.

-
i
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Let (~~,r,t) E a be such a vertex .

(b) There exists an actual production plan ~ in pos a(t) that is

within £ -distance 
~ of the pseudo-production p lan

= 
~H+l 

-f1 b11 ... b
3
1 [ :; I

constructed from 3.4.13, and such that at prices and revenue levels

(i~,r), the after-tax profitability of any unit activity in a(t)

exceeds the after-tax profitability of any unit activity used in

~ by at most ?.

(c) There exists an actual demand point ~ in Z(It,r,t) that is within

2-d istance ~ of the pseudo-demand point

21 n

= ( ~ y(j))~~ ~ ~ y(j)
3=3+1 j=J-i-l -~

constructed from 3.4.13, and within 2~1,-distance 2~ of the

aggrega te supp ly ~ + w( t) .

(d) Ac tual tax receipts generated by ~ and ~ are within 2 -distance

~ of pseudo— tax receipts

.7 n

~ r(b
3) 

y(j) + ~ 0(~ ) y(j)3=1+1 3=3+1 ~~ 
- -

derived from 3.4.13, and within 2~,-distance 2u of actual revenue

levels r .
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Proof: As in Theorem 3.4.15 the proof is broken down into a series of

steps.

Step 1; Selection of uniformity constants.

The family ( ( t _ E t, t+€t) )
tET 

forms an open covering of T.

Let ((tj
_c
~~, 

t
j+€

~~
) )
j€ ~ 

be a finite subcover of T, and let B
0 

be

a Lebesgue number for this subcover . By Lemma 3.4. 12 there exist bounded

sets and Z~ for each 3 in which con tain, respectively, all
3 3

solutions y to all systems 3.4.13 formed by choosing a in St , 
and

3
all vectors

~ 2 
1 y (2)

I O(~~g) J

for 3÷1 5 2 < n appearing in these systems. Let

(i) C1 
> 0 be an 2 -bound on

(ii) C~~> 1 be an 21-
bound on U Y~ ;

j€p j

(iii) C
3 
> 0 be an 2 -bound on U Z~ ;

j€p j

(iv) C
4
> I be an 2 -bound on c(T);

(v) C
5 
> 0 be the bound on diam postulated in 3.5.3;

(v i) C
6 

> (n-s-l)C
3 
+ C

5 
+ 1;

(v ii) C > 0 be an 2 -bound on 0 over U Z(v) x (v). (C
7 v€~(C6) - I

exists because of 3.5.2, Leumia A .l, and the continuity of 0.)

Choose E > 0 to satisfy
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min
i 

p(t) 1 1
(viii) € < 2 ((n+ 1)C, 

- 
c6_c
,~l);

4E (maxi p( i) ÷
~~~~

+ C 4 + C  ÷ c 6 ÷ C )
(ix) min

i ~
( i)

Choose El 
> 0 such that

(x) 
~l < ?j2;

(xi) 
~~ 

<

Since r is continuous on the compact set U ~ ( t )  x S x (tJ , there
tET

exists a I-cc uniformity constant B1 for (r, El). (See A.6 for the

definition of a p-q uniformity constant.) Choose €2 
> 0 to satisfy

(xii) 
~2 

<

(xiii) 
~2 

<~L/C2~

(xiv) 
~2 

< )~/2 -

(xv ) 
~2 

< -

Since fi is a continuous bounded correspondence, Lemma A .5 guarantees

the existence of a 1-1 uniformity constant B2 for (i9, €2). Let

> 0 be chosen so that

(xvi) E

~~ 

< €/C
2 

-

Since 0 is continuous on the compact set U ~(v) x (v), therevE~(C~)

exists a I—co uniformity constant 5
3 

for (0 , t b ) .  Choose €
4 

> 0

to satisfy

H
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(xvii) €
~ 

< i-i ;

(xviii) €

~~ 

< 8
3
/2;

(xix) €
~ 

< e/ C2.

Let 8
4 
> 0 be a 1-i uniformity constant for (

~~, ~~~ 
on £(C

6
).

Choose €5 
> 0 so that

(xx) €
~ 

< €/C2 
_ €

~~

and let 8
5 

> 0 be a 1-co uniformity constant for (c, €~).

Let > 0 be a 1-cc uniformity constant for (~~,1) on

Finally choose B > 0 to satisfy

(xx i) B < B o;

(xx ii) B < 81/2;

(xxiii) B

(xx iv) B < 8~/2;

(xxv) B <8
4/2;

(xxvi) B < B ~;

(xxvii) B < 8
6;

mm p(i)
(xxviii) 8< 2 C12

1— ~~(xxix) B <-  ;2(n-m-i.l) -

(xxx)

(xxxi) B < c1 + c3 + 
C4 + 11 911 cc + 2(n-m)’

1 4€(max~ p( i )  + + 1)
(xxxii) B <~~~ ~ - min i ~

( i) )
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Consider any a in (a~) with diam1 
a < B. Recall that

a = ((It0, r0, t0),  ..., ~~~~~ r21, t21
)). Let (It ,r,t) be any point

in cony a. Put q = sgn( r_Be) + .

Step 2: qg
3 

= 0 for 0 < 3 < H  and nO + q~ >~~~ mini p(i).

Since Ir-r3 11 1 <B for 05 j 5 n, whenever q(i) = 1, i.e .,

r(i) >5, then r
3
(i) > B-B = 0. The first assertion follows from the

definition of L.

If q = 0, i.e., r 5 Be, then

1k !!1 = I — k!! 1

> 1 - (n-m)8

> -~~ , 
by (xxix)

Consequently,

+ ~ > 1k!! 1 miri. p(i)

1
>~~ mini p(i)

Since the inequality holds trivially when q > 0, the second assertion

is also established .

Step 3: Construction of ~~.

In view of (xxiii) there exist activities in ~~t) for

1+1 < 3 < .7 suc h that - b

3
!!1 < ~~ 

The prod uction p lan
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1y 2... -f1 b11 ... b

3
] 

L y
3

belongs to pos a( t) and satisf ies

(3.5.5) Q~4II~ S Il~-~I!l
I .7

= (- E f y(j) + ~ ~~~. 
y(J))

j=H+l 3=1+1 -~

I 3
— (-  Z f4 y(j) + Z b 4 y(.fl)

3=11÷1 ~ 3=1÷1

3
Z I~~

_b 1I 1 y(j)5€2
C2 <~~

3=1+1 ~

The C2 factor arises because of (xxi), and the last inequa lity follows

from (xiii).

Step 4: Lower bound s on unit profitabilities .

For 1+15153,

m b
3 

- 
~3

b
3 I S ~~~~ IIbj IIcc S BC1 .

Since ~3
b
3 

- ey(b
3
) >0, ~b3 

- er(b
3
) ~ -BC1. For 11+15 3 5 I,

Inf 3 
- n3 f 3 1 < IlIt njlll If3!! <BC 1

Since It
1
f
3 

= 0, -~ f3 ~ 
-BC 1. 

-
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n
Step 5: ~ y(j) ~ 0.

j 3÷l

Suppose otherwise. Recall from Step 2 that qg
3 
= 0 for 0 5 3 <11.

Multiplying 3.4.13 by (t ,q) yields

I .7
0 = nO + - ~ nf ~ y(j) + ~: (itb

3 
- qy-( b

3)J  y ( j )

- 
3=11+1 -‘ 3=1+1

S

‘
3=11+1

mi p(i) - BC1 
C2 >0

The first inequality follows from the previous step, the second from

Step 2, and the third from (xxviii). The claim follows by contradiction.

Part (a) of the theorem is now established.

Step 6: Upper bounds on unit profitabilities.

In view of the preced ing step, there exists 3 ’ in (3+1, ..., n)

such that

L(v 31) = + c(t31) €Z (v3,) + c(t3,)

Let b be an arbitrary unit activity in j9(t). Because of (xxiii) there

exists b3, in ~(t 3 , )  s. t . IIb—b 1,!11 < 
~~ 

Hence
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1kb — er(b,v)] — (It

j
~~ b1, — er(b31 , v~ .)J I

= lCnb — ~b31] + [~ b3, — It 3, b31J ~- e[r(b1,, v .a) — r(b,v)J I

5 IIIE II~ lib_b i ll i co + lI n— n~, II ~, libj ilico 
+

<€ 2 +BC 1 ÷~~1

The term is a consequence of (xii) and (xxii). The €2 
term appears

because II - 11cc 5 Il~iI 1. Since n 1 ,b3, - ey(b
3 ~, 

v31) S 0, it follows that

(3.5.6) ~b - ey-(b,v) < BC1 + ~l 
+

For 1+15153,

- ey(~~, v)j - [~ 3
b
3 

- ey(b1, v~) ] l

= — + [It~~~~~~~ — n
3
b
3J + efr(b3, V

j

) — r( ’
~ 3, v)] I

1k—n 3 II 1 II~ 11cc + 1k3 II~ II~ — b
3 

II +

Since n
3
b
3 

- ey-(b3, v3) > 0, it follows that

(3.5.7) -(BC1 + ~l 
+ 
~~ ~ 

- ey(~3, v) .

Add ing inequalities 3.5.6 and 3.5.7 yields
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(3.5.8) nb - ei(b,v) 5 - ey(~ 3,v) + 2(BC1 + ~l 
+

- er(~~~, v) +

The last- step uses inequality (xxx). By a straightforward extension of

the preceding argument, inequality 3.5.8 also holds if the RHS is replaced

by -nf + ?~ for any 11÷1 5 3 5 I, or the LHS is replaced by -nf for

any f in J~~~, or both. Hence ~ exhibits the desired unit profitability

property, and part (b) of the theorem is established.

21 11
Step 7: Ji  - E ~( i ) I  < € and ~ < € (2n 9 ÷ (e-4-q)~)

—3 1 I t +  -0 l t +

Consider the expression

ti 11 1
(3.5.9) (n O + 

~
) 

~~ 
y(j) + 

~~ 
y(j) + ~ Itf . y(j)

3=3+1 3=0 3=11+1 -~

S
- Z. (nb . - ey( b . ) ]y (J )  - (n 9  +
3=1+1 2 3

Multiplying 3.4.13 by (It,e) and solving for the last four terms of

3.5.9, then substttuting this value back into 3.5.9 and cancelling the

~~ terms yields

21 21

(3.5.10) ItO E # ( i )  - E [It~~j 
+ nc(t

3
) + eO(L) - er

3
] y(j)

jaJ+l 3=3+1

Since >> 0 for 3+15 3 < n, Walras Law (3.4.2(c)] implies

- 

714.
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21 21

Z. (It
j~~j 

+ c(t
3
) + eØ(~ )..er i(i) = ~ n~0 Y(i) -

3=3+1 -~ ~~ 3=3+1

Adding the LHS and subtracting the RIIS of th is equation from expression

3.5.10 yields

~ (n—n ) Oy(j) — ~ (n—n .) [
~ + c(t .)J y(j)~ ,

3=3+1 3=3+1

which is bounded by

811911 C
2 ÷ 

BC
3 
+ BC

4
C2

and this in turn (since C
2 
> 1) by

(3.5.11) BC
2
(C
3 
+ C4 + 11911cc)

The bounds are direct app lications of (ii), (iii), and (iv).

One consequence of the domination of 3.5.9 by 3.5.11 is that

n H
(3.5.12) (nO ÷ ~ 

y(j) + E y(j)
3=3+1 3=0

I .1
> - E nf

3 
y(j) + ~~ , [~ b3 

- eT(b .)] y(j)
3=11+1 3=1÷1

+ (nO + s~) - 8C
2(C3 

+ C4 + lI 9 Il ~)

.? (nO + ~
) - BC

1
C2 

- BC
2

(C
3 

-~- C4 ÷ 119 11 cc
)

The second inequality follows from Step ii-. - 

-
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A second consequence of the domination of 3.5.9 by 3.5.11 is

n H
(3.5.13) (n O ÷ e~.) 5 y(3) + ~~ 

y(j)
3=3+1 3=0

I

~ nf y(j) + ~~~ [nb - eyfb 1)] y(j)
3=11+1 3=1+1 1

+ (nO + ~
) + BC

2(C3 
+ C4 ÷ 119 11 cc

) F
< (no + ~

) + (BC 1 + ~l + €2)C2 + 
BC
2(C

_ + C4 + 1911 cc
)

The second inequality follows from an obvious extension of 3.5.6 to

vectors b in 4&( t
3

) for 1+1 5 j 5 3, and the third inequality from

(m i).
H

Multiplying 3.14.13 by (0, e-q), solving f or ~ y(j), and
3=0

substituting this expression into 3.5.12 yields

21 3
(nO + &~) ~ y(-j) > ~: (e-q) ~(b 1

) y(j)
3=3÷1 3=1÷1

21

+ ~ ((e-q) Ø(~ ) - (e-q)r4 + (e-q)c~]y(j)
3=3÷1 -j

- (e-q)~ + (nO + ~
) - 8C2(C 1 + 

~~ 
+C
4 + lolL)
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Since r and 0 are non-negative and (e-q)r
3 
< 2(n-m)b, the preceding

inequality imp lies -

(3.5.14) (nO + ~
) Z Y( i) � (n O + ~

) - 2(n-m) BC2 
- BC

2(C1~~ ~~ 
+ !le lI~)3=3+1 3

> ( n e ÷ q ~) - €  , by (xxxi)

H
Dropping the non-negative term 

~ y(J) from 3.5.13, dividing by
j=O

nO -*- e~, and combining the result with (nO + q~)
1 times 3.5.14

yields

~~~
n 9 ÷ c ~ 

_
3_3~ 1

Y;~3j _~ n9 ÷ W ~

which implies

Replacing the left hand term by the more negative term nO 
-€  

completes

the first half of this step.
U

Rearranging 3.5.13 and imposing the lower bound on E y(j)
3=3+1

derived from 3.5.14 yields

H
Z. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3=0 It + -t--

+ (e+g) i)~— 
n9+~~~

thereby completing the second half of this step.
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Step 8: ll~j 1Icc .5 C6 for 3+1 5 3 .5 ii.
Suppose there exists 3’  € (3÷1, ..., n) such that I1~~~1I > C6.

Let v
1 

be any of the other demand labeled vertices of a. Then either

Il~3 lL > C
6 

or else v
3 
€ £(C6). 

In the latter case since it
3 

>> 0, the

ver tex v
3 

actually belongs to ~(C6) 
by 3.5.2(a).

Consider the line segment joining v3, and v
3~ 

All points (n,r,t)

on this line segment have n >> 0, and hence are subject to Walras Law

(3.4.2(c)]. The right hand terms of the Walrasian equation are bounded

on the segment; the left hand terms are bounded below. Hence the left

hand terms are also bounded, in particular the term n~ (n ,r,t). Since

the line segment (ignoring t) lies in the interior of S, it follows

that is bounded there . Thus the entire segment lies in .~(a) for

some a > 0, and by 3.5.2(c) the demand correspondence is 1.s.c. on the

line segment.

Since ~(C6) 
is closed, it meets the line segment in a closed set.

Hence there is a point ~ in the intersection closest to the end point

v3,. If ~ ~ v3, , then no point in ~(~
r) can be less than C

6 
in

£
cc~~~

0rm . Otherwise, since is l.s.c. there, a point on the segment

slightly closer to v3, than ~ can be found whose image under also

con tains a point with £
cc
_norm less than C6, thus contradicting the

definition of ~~. Hence if ~ ~ v3 , ,  there exists a point ~ in Z(~ )

with £cc
_norm at least C6. The same is trivially true if = v3 , ,

e.g., let ~ =

Since ll -v 3 ll 1 < B < 86, there is a point in ~(v3
) within

2 -distance I of ~~. Hence II~ II > C~- - I and by the definition of
cc 0

c5, j IL .? c6 - c5 - 1.

78

~~~~~~ L 

~~~~~± ‘—~~~: ~~~~~~~~~~~~ -a ~~~~~~~~
- 

- 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~- 

- 
- - 

. 
- 

- 

-



- ~~~~~~~~~~~~ __-~~~~~ ----- . --- - - ,  — - -

It has now been established that II~j~II cc >C6 implies that for

all 3+1.5 3 < n, either l1~j Ilcc > C6 or else lI~j llcc > C6 - C
5 

- I. By

definition of C ,

C
3 ~ ll~ Y ( i ) l l

cc 
= lI~3 IL y(j) > (C6 - C5 - I) y(j)

Hence y(j) <C
3
/(C6 

- C
5 

- 1) for 3+1.5 3 <n . But in light of

Steps 2 and 7,

1 2€ <~~- min
i p(i) 

— 

ice +

n

.5 ~ y (j)
3=341

(n#l) C
3

SC
6 

- C
5 

-

which contradicts (viii) and thereby completes the step.

Step 9: Construc tion of r.

The arbitrary point (n ,r,t) € cony a chosen at the end of Step I 
—

will henceforth be considered one of the demand-labeled vertices

(n 3, r3, t
3

) for 3÷1 .5 3 < n. In view of the preced ing step, all

such points belong to £(C6). Clearly n ~ 0.

As a consequence of (xxv) there exist vectors in ~(n ,r,t)

for .7+1 S 3 5 n which satisfy II~J - 

~j II l < € 14• Define
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I ( Z y(j)y ’ 
~ 

I~ y(j) .3=3+1 i—Si-i -

Since ~ (n ,r,t) is convex, it contains 
~~
. Abbrev iate

and O(T,n ,r,t) by O(l~) ana 0(1) respectively.

Step 101 Supply-demand proximity.

Consider the expression

(3.5.15) III - w( t) + f y(j) - ~ b ~(3)II
j 11+1 3=1+ 1 

cc

Upon adding and subtracting identical terms this becomes

U 21

II ~ El + c(t)] y(3) ÷ (1 - 
~~~ 

y(3)) (I + c(t)) - 9
3=3+1 3=3+1

I S
+ ~ f

3 
y (j )  - ~ b

3 ~( J ) I I
J=E4-i j 1+1

Expanding I according to its definition and replacing the last three

terms by equivalent terms taken from 3.4.13 yields

II ~ (I~ - + c(t) - c(t3)] y(j) + (I - ~ ~(j)) 
(1 + c( t ) ) j I ,

3=3÷1 3=3+1

k
which in view of the first part of Step 7 is bounded by
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~1

e(C ÷C
(€ 4 + e5)C2 + itO ÷ q ~

€ ( nO ÷ C4 + C~~÷ C6)
— i c 8 + c~~

2e(max
~ 

p(i) + + C4 + C5 
+ C~)

— min
i 
p(i.)

The second inequality uses (xx), the third uses Step 2, and the last uses

(ix). Combining inequality 3.5.5 with the one just established , i.e.,

~ 
exceeds expression 3.5.15, yields

Ill - w(t) - ~lI cc <
~~ ‘

thereby proving the second half of part (c). The first half is established

by the following calculation:

U 21

I - ( Y~ y(j)~~~ E y(j)
j.T+l j 3+l cc

= ~ ~~~~~~ II ~~~ 
— 

~ J
3=3+1 3=3+1 ~ cc

n 
-lS ( E y(j)) €

~ ~~ 
y(j) = €

~ 
<~ .L .

3=3+1 3=3+1

The final inequality comes from (xvii) .
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Step 11: Tax-revenue proximity.

The discrepancy between the actual taxes levied against t and ~~,

and the pseudo-taxes defined in part (d) may be estimated as follows:

.7 21 3.
(0(1) + r(~ 

) y(j)) - C E 0(e ) y(j) + r(b )
3=1+1 - 

3=3÷1 3=1+1 cc

U n
= E (0(1 ) - 0(L)] y(J) + (I — ~ y(j)) 0(1)

3=3+1 -~ 3=3÷1

3
+ ~~~ [y-(b~) - r(b4)] y(~j)

3=1+1 cc

+ 
~l

€ (it9÷~~~ ÷ C )  2€ (max p(i )+e~~+ C )

— nO + — mini p(i) -

The equality step uses the affineness of 0 in the demand coordinate.

The first  inequality uses the f irst  part of Step 7 plus (xviii), (xxiv),

(xx ii), and the definitions of for 3+1.5 3 .5 a and for

1+1< 3 < .7. The second inequality uses (xvi), and the third inequality

Step 2. The final inequality follows from (ix).

The discrepancy between actual revenue and pseudo-taxes may be -

- - -

estimated by
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21 .7
r — Ø(~ ) y(j) + E r(b4) y(j))

3=3+1 -~ 3=1+1 ‘ cc

11 21
= r + ~ g

3 
i( 3) + Z [A-r

3
] i( 3) -

3=0 3=3÷1 cc

n a H
= E (r- r I y(j) + (1 - ~ y ( j ) )  (r-A) + ~ g

3 
y(j)

3=3+1 3=3+1 3=0 cc

<BC €L2n6 + (e+g)i~) 
-

— 2~~~n 8 + q ~~~

<BC
— 2~~

li-€(max~ p(i) + + I)
.5 BC2 + rnin~ p(i) 

<~~ 
-

The first equality is obtained by a substitution involving the last n-rn

equations of 3.4.13. The second equality is a result of algebraic

manipulation. The f irst inequality uses all of Step 7 plus the fac t

that r and ~ . are bounded above by e. The last two inequalities

follow from Step 2 and (xxxii) respectively .

C omb ining the two estimates ob tained above yields

S
r - (0(1) + E r(~ 4) y(j)) < ~ -

3=1÷1 ‘ cc

Part (d) of the theorem is now established, thereby completing the proof. 0

3.5.16 . REMARK. The argument in Step 8 additionally shows that

satisfies condition 3.14.2(e).
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3.5.17. REMARK. If E happens to be bounded on S x T, then

Assumptions 3.5.2 and 3.5.3 can be replaced by the single assumption of

lower semi-continuity. Furthermore, the conclusions hold for any (n,r,t)

in cony a (not just demand-labeled vertices), and I!,c11 1 -~~~ 8.

The above theorem guarantees that the economic algorithm will

generate an approximate equilibrium graph of arbitrarily high quality in

a finite-number of steps. For any desired tolerances A and ~~, one need

only operate the algorithm until it passes through a block S x EL, i+11

containing n-simplices of diameter no larger than B. The last segment

of (
~~

) which spans the block would then be mapped back to S x T to

yield an approximate equilibrium graph A1. Since neighboring points in

Ai 
differ by at most 2B in 21-norm, every 

economy &( t) lies within

k k k k
B of an economy e(t

3) 
represented by a point (it 3, r3, t

3) in Ai.

The latter economy has production and consumption plans which comprise

an approximate equilibrium (modulo \ and u) at prices and revenue

levels (n,r), and which may be approximated (within ~i) by pieces of the

label system L(ak)y~
C 

= ~
, yk > 0.

Of course in particular numerical examples the uniformity constant

B is never known. Even if it were, one wou ld be foolish to opera te the

algorithm until a block S x Ci , i+l] containing n-simplices of diameter

no grea ter than B was traversed. Instead one would continually monitor

supp ly-demand imbalances and unit profit negativity in hopes of satisfying

the toleranc es ~i and A well before the diameters of the n-sitnplices

reached B. Without the knowledge tha t B exists, however, the use of

such criteria would be difficult to justify.
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Figures 1.1.5 and 1.1.6 indicate what an approximate equilibrium

graph might look like. The endpoints of the line segments forming the

polygonal path comprise the sets a • The approximate graph A
1 

consists

of selected endpoints, including at least one from each

3.6. Alternate Versions of the Model

The economic model presented in this chapter incorporates one or

more revenue collection and distribution systems of the type introduced

by Shoven and WhaI.ley. The development of the model relies heavily on

the presence of these systems. If, however, one wishes to study economies

with no revenue systems, his best recourse within the context of the model

is to let n = mi-i and set the tax functions 0 and r identically

equal to zero. This will indeed induce the algorithm to correctly approx-

imate the equilibrium graph of the family of economies. Such an approach

is wasteful computationally, however, since the algorithm must operate in

a space containing one unnecessary dimension.

A better approach is to strip the model of revenue systems entirely.

The analysis in this chapter can easily be repeated for such a reduced

model. All coordinates of S are allocated to prices, and the

portion of the economic labeling disappears. The second equilibrium

condition is discarded, and taxes are removed from the third. Walras Law

is purged of the 0 and r terms. All constructions and proofs are

simpler and can be readily obtained by condensing existing constructions

and proofs . Severa l of the numer ical examp les discussed in Chap ter 6 are

based on this variation of the economic model.
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Another potentially useful variation recognizes differences in

the tax situations of individual consus~ rs and producers. As the model is

presently for ul.ated, taxes depend only on the aggregate behavior of

economic agents. This simplification is satisfactory so long as each

deii*nd point and production plan result from ui~ique combinations of agent

behavior . But if two producers, for ~~~mple, with different tax rates

operate the same non-slack activity, then r must necessarily be ill-

defined.

This limitation can be easily overcome by assigning each const~~ r

his own demand correspondence and tax function and each producer his own

unit activity correspondence and unit tax function. These agent-specific

mappings must obey the same rules as the present economy-wide mappings.

Combining the agent-specific mappings by si ing demands and taxes and

taking unions of activity sets results in new economy-wide mappings which

satisfy the same conditions as the present ones. Therefore the proofs

go through virtually unchanged.
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CEAPTER 14

CC~(PtTZLTICNAL REFINEMENTS

The development of the economic algorithm in the preceding chapter

was directed primarily toward exploiting the labeling capabilities of

the fundamental algorithm of Chapter 2. Little attention was paid to the

abstract pseudomanifold Khl+l other than to ascribe it a needed refine-

ment property . Before computations can be performed With the algorithm,

however, an explicit specification of the pseudomanifold is required .

Although refining subdivisions of S x (O,cc) have been discovered which

satisfy conditions 2.2.1 and 3.4.10, unfortunateLy none of these are

practical for computing equilibrium graphs . The problem with conventional

structures is that they refine rapidly and inexorably as t -+cc. Conse-

quently, the approximation error along equilibrium graphs produced on

such structures tends to shrink to unmanageable levels before the final

economy is reached.

The desire to maintain relatively uniform levels of approximation

error along equilibrium graphs necessitates a new concept in manifold

design. The dynamic definition principle introduced in the next section

is such a concept . This principle essentially states tha t the geometry

of the manifold need not be fixed in advance, but can be dynamically

altered in response to accuracy requirements as the algorithm proceeds.

In Section 4.2 two families of manifolds which embody the dynamic

definition principle are introduced -- one for R21 x (0,cc) and another

for S x [O,cc) .  Each member of these families is constructed from
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transformed sections of Todd’s and triangulations [20] . The

configuration of these sections is determined by external requests based

on information contained in the label systems L(~ )y = p, y .? 0 for

E K”. Section 1~.3 describes how these label systems are manipulated

to generate the manifold requests. The final section of the chapter

lays out the basic architecture of the computer routines used to ixnple-

ment the economic algorithm, with specia l emphasis on the sequence of

major processing activities and information flows between them.

li-.l. The Uniform Approximation Problem

The quality of the finite approximations proposed in Section 3.5

is measured in terms of supply-demand and tax-revenue proximity, and unit

profit negativity. A convenient term for describing these assorted

deviations from equilibrium behavior is range error. The companion term,

domain error, will be used to denote the diameters of the n-simplices

from which the approximate equilibria are extracted. Phrased in this

language, Theorem 3.5.14. states that all components of range error along

an approximate equilibrium graph A
1 

can be made to satisfy pre-deter-

mined bounds by keeping the domain error sufficiently small. The theorem

gays nothing, however, about fluctuations of range error within the

prescribed bounds.

For computational purposes it is highly desirable to have uniform

levels of range error throughout the set A~ . The principal benefit of

uniformity is computational efficiency, i.e., fewer iterations required
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to generate A~. The numerical experiments reported in Chapter 6 reveal

that large amounts of computational effort are required to produce equilib-

~‘um graphs for even modest size problems . Since manifold mesh is a key

determinant of computational effort, it is imperative to *~~e the largest

grids possible which still keep range error vithin prescribed bounds.

Also, holding range error relatively constant increases the likelihood

that observed price variations along the equilibrium graph result from

- changes in economic behavior rather than from variations in the quality

of approximations.

A fundamental computationa l issue is, therefore, how to maintain

uniform levels of range error along the approximate equilibrium graph.

The only readily controllable parameter which influences range error is

domain error, i.e., the mesh of the manifold . There is no way, however,

to determine in advance what the domain error should be along a particular

path. What is needed is a dynamic adjustment mechanism to monitor range

error as the algorithm proceeds and alter the manifold accordingly. Such

a mechanism would have to rely on an external information loop to provide

control data, because the range error of an approximate equilibrium depends

on the entire label system L(~~ )y = p, y > 0 evaLuated at current prices,

not just the most recent label.

The idea of dynamically adjusting the manifold presents some serious

technical difficulties. First of all the manifold generated through such

a procedure must satisfy conditions 2.2.1(a) - Cd) in order for the

algorithm to be assured of working— a non-trivial requirement even for

rigidly def ined structures . Furthermore, the way the manifold is defined
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in a particular region must be recorded so that the same definition can

be used if the algorithm passes through that region again. In order to

prevent the information structures which store the manifold definition

from becoming unmanageab le, some limitations must be placed on the type

of adjustments that are permitted . If too little flexibility is allowed,

however, then the ability to control. range error is lost.

A compromise between complete flexibility and rigid pre-definition

is achieved in the dynamically defined manifolds and introduced

in the next section. Adjustments to the manifold mesh are permitted only

when the algorithm moves upward in S x [O,oo) to previously unattained

levels. Whenever such a movement occurs, the manifold is immediately

k k+lspecified on a thin slab S x [t , t ) protrudi.ng into virgut territory.

The manifold may thus be regarded as a flexibly defined stack of rigidly

defined layers. The price paid for this compromised freedom of definition

is the potential loss of control over range error if the path turns

back down into previously ~iefined regions of the manifold. It is by no

means inevitab le, however, that such loss of control will be accompanied by

a loss of accuracy .

The concept of flexible manifold definition may be summarized in

the following dynamic definition principle : the specification of any

portion of the manifold may be deferred until that portion is actually

required for calculations, provided the specification procedure always

results in a legitimate structure. This principle may be extended to

the family of economies as well. Hence one could conceivab ly

build dynamic growth models in which the parameters of future economies
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depend on current ly attained equilibria. Such models, however, are beyond

the scope of this study.

An additiona l benefit of dynamic manifold construction is a simplifica-

tion of the procedure out lined in Section 3.5 for locating a satisfactory

approxi~~ te equilibrium graph. Instead of generating successive sets

*mtil one satisfying all range error tolerances is fo~md, only the

single set need be computed . This is accomplished by refining the

manifold until all range tolerances for economy e(O) are satisfied,

then adjusting the manifold to maintain these tolerances as the algorithm

proceeds through the remainder of the family (
~ t ) J~~ ~~ 

The level in

S ~ [O,o~) where the first acceptable equilibrium for e(o) appears is

defined to be 21. The rate of progression through the remainder of the

family is controlled by applying a vertical scale factor to the economy

index.

1~.2. Dynamically Defined Manifolds D
1 

and D
2

The dynamic manifold construction procedur e outlined above will. now

be formally laid out and analyzed. The ana lysis is based on a character iza-

tion of all possible outcomes of the procedure. Each outcome will be

shown to constitute a legitimate pseudo—manifold on S x [O,~.). Most of

the development deals with triangulations instead of pseudomanifolds.

The two concepts, however, are equivalent for all practical purposes.

The exposition begins by defining a fami ly D1 of eriangulations

of RU x [O ,~ ) which simultaneously triangulate a subset of ft° x (o ,~ )
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affi nely hoineomorphic to S x [O,co) . The image of D
1 

under the homeotnor-

phism yields a family D2 of triangulations of S x (O,øo) . Members of

the class D
2 represent all possible outcomes of the dynamic construction

process.

The raw materials from which the fami ly D
1 

is build are Todd ’s

uniform triangulation J1 and his refining triangulation ~T3• Slabs of

simplices from and are stacked together to exhaust R~ x [o,~).
Care is taken so that the faces of simplices in adjacent slabs agree on

the interface between the slabs. Much of the notation is taken from Todd ’s

paper [20). One minor change, however, is that the sin~p1ices considered

here ~ e closed, but have relatively open faces.

Throughout this section Rn x [0,ce) will be identified with

fx E R~~
1 : x(0) >0 1 and S x f 0 ,~~) with (x ~ R~~

2 
x(1) * ... ÷ x(n÷1)= 1).

The [O ,x ) factor thus lies along the 0- tb coordinate axis in both spaces.

This factor will frequently be described as extending in the “vertical”

direction.

The specif ication of D
1 begins with the primary building blocks

and J
3 

and their derivatives. The triangulation 
~~~ 

of

depending on the scale factor ~ > 0 is defined as follows. Let

= 
~~ 

€ y(i)/~ is integral for 0 < i < a) be the set of

vertices of J1(~ ), and let = fy € J~(~~) : y(i)/~ is odd for

O < i < n) be the set of central vertices.

I~.2.l, DEP~~ITION. J1(~~) consists of all (n+1)-simplices

= (y_1, y0, ..., y~) such that for some triple (y , ir ,a) in 30C x

( see Section 1.3 for definitions of the latter two symbols)
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y_1 = y

= 
~~~~~~~~~ 

+ ~a(i) eI(~) , 
for 0 < i < n

The simplex t is also written ~ = (y,$,a). In Leumia 3.2 of (20J ,

Todd proves that J
1(B) triangulates Rn+1.

An important hereditary property of J1(~ ) which insures that the

slabs coinprisingmembers of D
1 

f it together pro perly is noted in the

following proposition .

Ii..2.2. PROPOSITION . The faces of simplices in which meet the

slice R” x (~ 2)  for 2 odd form an n-dimensional version of

on the slice.

Proof: The slice R~ x (~ 2 )  is triangulated by the collection of

n-sixnplices formed by taking the f irst  n+l vertices of members (y,*,a)

of with y(O) = ~2 , 4~(n) = 0, and a(n) = 1. Ignoring the O-th

coordinate, these n-simplices satisfy all membership criteria for

in n-dimensions, and exhaust the set of simplices that do so. 0

Sections of the triangulation J1(~~) provide manifold b locks of

unif orm mesh. The particular sections used to construct triangulations

in will now be def ined.
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14. 2.3. DEFINITION . Define J
~
(b ,2) for 2 > I and odd to be the set

of all. (n+l)-simplices in J
1(5) which meet R~ x (5, 52).

li.2.Ii.. PROPOSITION. J
1(5,2) triangulates R~ x [5, 62] .

Proof: Since ~T1(5) triangulates Rn~~, the faces of all siuiplices in

f J
~
(5,2) cover R~ x (5, 52) and are disjoint. Consider the simplices

(y,~j r,a) in J1(5) with ~fr(n) = 0 and either y(O) = S and a(n) = 1,

or y(O) = 52 and a(n) = -I. These simplices belong to J1(6,2) and

n n ncover R x £6) and R x (62) , respectively. Rence R x [5, 521 is

covered by simplices in

Any point in R~~
’ outside of R~ x [5, 62] must lie in a simplex

(y ,~c,a) of .II(S) satisfying either y(O) < 5, y(O) > 52, y(O) 5 and

a(~ir~~(O)) = -1, or y (0) = 62 and a(j~~ (O)) = 1. Simplices satisfying

any of these conditions miss R~ x (5, 52) and hence cannot belong to

Therefore J
1(5,2) covers R~ x (6, 52] precisely. 0

In light of Proposition li.2.2, the upper and lower boundar ies of

RTt x (5 , 521 inherit n-dimensional versions of .I
i

(6 )  from

The next components of D
1 

to be specified are the blocks with

expanding and refining mesh. Both of these are derived from Todd ’s

refining triangulation Let J~ = (y € R~~
1 : y(0) = 2~~ for

k E Z and y( i)/y(O) integral for 1 < i < a) be the set of vertices

and J
OC 

= {y € J~ : y(i)/y(0) is odd for 1 < j  < n) the set of

central vertices. To each central vertex y with y(0) = 2~~ and k > 1,

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
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T1

there corresponds a closest central. vertex z with z(O) = ~~~~~ The

vertex z may be represented as a = y - y(O)v , where v € A~’~~ and

v(i) = -1. or +1 according as y( i)/y(O) equals 1 or 3 (mod 14).

14.2.5. DEFINITION . ~J3 consists of all (n+l)-simp lices t =

such that for some triple (y,1~s,a) in 3
0C x 

~n+l 
x A~~

’ with y(O) <~~~,

y_ l = y

y~ = y~_ 1 + y(O) a(i) e,4,(~~) , 
for 0 < i < J a *

1(o)

Y~ 
= Yj 1  

- Y(O) v(~ (2)) e~(2)

= y~_1 + 2y(O) v(*(i)) e~(~) , 
for j < i ~ a,

where v is as above.

The simplex T is also written ~r = (y,’~r,a). Note that only the

first j-l components of the vector a are used in the definition.

In Le~~a 5.2 of (20], Todd proves that triangulates R~ x (0,1).

The triangulation .J
3 

possesses a hered itary proper ty similar to

.i~(6).

14.2.6. PROPOSITION. The faces of simp lices in which meet the slice

x (2~~} for 2 € Z form an n-dimensional version of J1(2
2
) on F:

the slice .
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Proof: For 2 
~ 
1 the slice R~ x (2

_2
) is triangulated by the collection

of n= simplices formed by taking the first n+1 vertices of members

(y,*,a) of J
3 

with y(O) 2~~ and .V(n) = 0. Ignoring the 0-tb

coordinate, these simplices satisfy all membership criteria for J1(2~
2
)

in n-dimensions and are the only ones that do so. An equivalent way to

represent these n— simplices is to take the last n+l ve:tices of members

(y,ilr,a) of J
3 

with y(O) = 2
2_1 

and ~(o) = 0. This representation

covers the case £ = 0. 0

The O-th coordinate of the central vertex of simplices in plays

a role similar to the scale factor S in J1(6). Later in this section

the manifold blocks extracted from 3
3 

will be translated vertically,

and hence the defining recursions in ~..2.5 will no longer hold. If ,

however, one replaces y(O) with the appropriate scale factor 5, the

recursions will still be valid. To cope with this eventuality, simplices

in vertical translates of .1~ will be denoted (y,*,a,5), where 5 is

an appropriate scale factor 2~~. For consistency simplices in vertical.

transla tes of Ji(6,2) will likewise be denoted (y,~ir,a,S).

The sections of 3
3 

which prov ide manifold blocks of expanding

mesh will now be def ined.

14.2.7. DEFINITION. Define 3
3
(2 1, 22) for integers 22 > 2~ > 0 to

be the set of all (n+l)-simplices in 3
3 

which meet R~ x (2 _ 22, 2
_ 2
1).
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14.2.8. PROPOSITION. J
3
(21, £2) triangulates R~ x [2

_22, 2
.2 1].

Proof: Since 3
3 

triangulates Rn x (0, 1], the faces of simplices in

3
3
(21, £2) cover an x (2~22, 2

2l) and are disjoint. Every simplex

(y ,~V,a) in 3
3 

with y(0) = 2 21~
1 and ~~O) = 0 belongs to 3

3
(21,22) ,

n -21and these siinplices cover R x (2 3. Similarly every simplex (y,~V,a)

in- J
3 

with y(O) = 2
_22 and ~1r(n) = 0 belongs to J

3
(21, 22) ,  and

these simplices cover R~ x C2
_22
). Hence 3

3
(21, 22) 

covers

x [2
_22

, 2
_21].

Any point in R’~ x (0,1] lying outside of R~ x (2
_22

, 2
_2 h1 must

lie in a simplex (y,*,a) of 3
3 

satisfying either y(O) > 2~~~ or

y(O) < 2~~2. Since no such simplex meets Rn x (2 22, 2
_2l), none can

belong to 3
3
(2 1, 22) .  Hence .7

3
(2 1, £2) covers R

tl 
x [2

_22, 2
_2hJ

precisely. 0

In light of Proposition 14.2.6 the upper and lower boundar ies of

Rn x [2 ’2, 2
.21] inherit n-dimensional versions of J1(2

21) and

j
l(2

22) , respectively, from J
3
(21, 22 ) .

The only primary building block that remains to be specified is the

one with refining mesh. It is obtained by merely inverting the expanding

segment.

14.2.9. DEFINITION. Define _J
3
(21, 22) for integers 22 > L

i > 0 to

be the image of 3
3
(21, 22) under the linear homeomorphism that reverses

the sign of the O-th coordinate of points in R~~
1.
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Since triangulations are preserved under linear homeomorphisuzs, the

simplices in 
~~~~~ 

£2) triangulate Rn x [.2
_L I, _2~

22]. Also, since

the homeomorphism used to define 
~~~~~~ 

£
2) affects only the 0-tb

coordinate, the n-dimensional versions of 31(2
2L) on Rn x

for i = 1,2 get tansferred intact to the boundary hyperplenes of -

an 
x [-2~~~, 

_2~~2].

Now that all the necessary building blocks have been defined , the

next step in the specif ication of D
1 is to explain how these blocks fit

together to form trianguLations of R~ x (0, o~ ) .  Each member of is

characterized by a sequence (B
k
) of blocks of simplices, a sequence

(t
ic
) of block interface heights, and a sequence (5~5 of b lock inter-

face sca le factors . The simplices in each block Bk triangulate the

slab Rn x ~~~~ ski. The blocks are configured so that both Bk and

3~~
1 

induce an n-dimensional versioü of J (6
k
) on the interface

R
n 
x (t

ic
). Each Bk is a vertical translate of either 

~~~~ 
2),

3
3
(21, 22), or -J

3
(21, £2) .  Blocks with odd sequence n~~~ers are

translates of Ji(S ,2) , while even-numbered blocks may be translates of

either 3
3
(2 1, 22) or _J

3
(21, 22). 

Each block Bk is assigned the

type code = -1, 0, or 1 according as its mesh is refining, unif orm,

or expanding, i.e., according as the block is a vertical translate of

_3
3
(2l, 22) ,  3

~
(6 ,2), or 3

3
(2 1,22) .

In practice the b locks are specified one at a time, each depending :~
on its predecessors and the requirements of the economic algorithm. The

dynamic construction procedure is really, therefore , just an induction

scheme for defining new blocks in terms of previous ones. This scheme

serves as the basis for the formal definition of the family D1.
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14.2.10. DEFINITION. The family D
1 

of triangulations of R~ x [0,co)

consists of all collections U B
k 

of (n÷l)-simpl.ices taken from
lc=0

sequences (8~C

, ~
k
, 5

k~ generated according to the following rules:

k = 0: B° = _J~(0,2) + e0 for some integer 2 > 0;

C
0 

= I * 2~~;
O -ZS .2 ,

Ic > 0 and odd : B
k 

31
~5

k_1
, 2) + ( t ~~~

1 
- Sk_ l )e0 for some

odd in teger 2 � 3;

= t
k_1 

÷ (2-1) 6
k l ;

= S
ic-I

k > 0 and even: Either

B
k 

= J
3
(2, -log2 

5
k_l
) ( t ~~~

1 
- S

k_l
)e0 

for

some non-negative integer 2 < -log2
k k-i -2 k-I
t = t  ÷ (2 - 6

k -2 .S _ 2  ,

or

Bk = -3 (-log 5k-l 2) .
~~ ( t ~~~

1
+ S

k_i
)e0 

for

some integer 2 > -log2 S
k k-i k-I -2

t = t  ÷ 6 - 2  ;

= 2
_2
.

Note that is always a non-positive integral power of two, so

the log2 terms are always integral. Members of D1 will be denoted

interchangeably by the sequence ~~~ ~
k
, 5

k~ and by U Bk .
k=0
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14.2. ii. PROPOSITION. Every member (B
k
, t

ic
, 5

k
) of D

1 
with

k n
t -+~~ triangulates R x [0,oc~).

Proof; Since triangulations are preserved under translation, each block
k n k-i k * k
B triangulates the slab R x (t , t ] • Since t —~~~, the faces

of all (n+ 1)-si.~p Lices in U B cover R x (O ,oo) . It remains only
k=O

to show that these faces are disjoint. Every face lies either in an

open slab x ( t ~~~
1
, t

k
) or in a slice R~ x (t ic) . The faces within

open slabs are disjoint because they belong to a single block of simplices.

n kThe faces within a slice R x ( t  ) are di.s3oint because the two blocks

of simplices Bk and B~~
1 each induce the same n-dimensional triangula-

tion 31(6 k) on the slice, as may be verified from Definition 14.2.10

and Propositions 14.2.2 and 14.2.6. :

Henceforth it will be assumed that all members (B
k
, ~

k
, 5

k ) of

D1 satisfy t~~ -~~oo • Later, after the family 
~2 

has been introduced,

it wit], be demonstrated that this assumption is always satisfied in

practice.

The first few blocks of a typical triangulation of class D
1 

are

illustrated in Figure 14 . 2 .1. The righ t triangles in the figure represent

2-simplices of the triangulation. The sequence (~
1c
, t

ic
, 5

k
) of block

types, block interface heights, and interface scale factors associated

with this triangulation is (-1, ~~, 
.
~), (0, 1 ~, ~), ( 1, 1 •~, 

.
~

) ,
(0 , 2, .~), 

(-1, 2 ~g, ~~~ 
and (0, ?, ~~~ 

(The ? signifies that B

is s t i l l  under const ruct ion.)

* -1.
C .0.
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37\7~~7\7\7~~7\7c = 0

/\/ N/ \/ .1° 1..
Figure t4. .2 .l . A t r iangula t ion  of class on R 1 

~c. [O ,aô)

101

-

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ - .-- -- l_- _- ~~~~~~~~~~~~~~~~~~~~~~~ z



.

~ 
.

~~~~~~~

-- -

~~~~~~~~~ 
.
~~~~~~~ -

The inductive scheme presented in 14. 2. 10 suggests that each block

Bk is defined in its entirety at step k of the induction. In practice

the blocks are built-up one layer at a t ime as the algorithm c limbs

through [0,vo). Whenever a new maximum altitude is attained, a decision

is made whether to extend the present block or begin a new one . In the

latter instance the block interface height t~~, the interface scale

factor ~~~~~ and the new block type ~~~‘~~• are recorded so that the manifold

can be reconstructed should the algorithm turn back down. With these

global parameters in place, the block number ic and the local representa-

tion (y,iir,a,S) contain all the information needed to characterize any

(n+l)-s implex in a member of D1.

The family D
1 

has now been described sufficiently well that the

characterization of the class D
2 

of triangulations of S x (O,oo ) can

proceed. Little detailed work remains to be done because members of D2

are merely images under an affine homeomorphism of portions of triangul.a..

tions in D1. The homeomorphism does not affect the 0-tb coordinate of

points in R
n 
x (0,oo), and therefore the vertical aspects of the geometry

of D1, notably the block structure, get transferred intact to D2. The

shapes of simpl ices in D
2 

are, of course, different from their pre-

images in D1, but their size is still directly proportional to the local

scale fa ct or S. Thus the notions of refining, uniform, and expanding

manifold blocks remain valid for 1)2.

The first step in the definition of D
2 is to identify a subset of

x [O ,co) that is triangulated by members of D 1 and is affirt e ly

homeomorphic to S x [O,oo). Let
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C x [O,co) = (x € R’~~
. 
: x(O) > 0 and 1 ~ x( 1) .? ~~~~~ � x(n) ~ 0)

As elsewhere in th is section the (0,oo) factor lies along the 0-tb

coordinate axis. According to Lemmas 14.1 and 5.5 of [20J and Proposition

11.2.11, the (n+1)-simplices in any triangulation of class D
1 which

intersect the interior of C x (0,~ ) triangulate its closure, Further-

more, C x [O,o~) is homeomorphic to S x [0,co) under the affine mapping

u : C x (O,~) —~S x (0,oo) defined by u(x) = Ux + e1, where U is the

(n+2) x (n+ l) matrix

1 0 0 . . .  0

o -i o . . . 0
0 1. -l . . . 0

0 0 1

—I.

0 0 . . .  1.

The stage is now set for the formal definition of D2.

a.
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11.2.12. DEFINITION . The family D2 
of triangulations of S x [0,oe)

consists of the images under u of all triangulations of C x [O,oo)

induced by members of D
1.

Members of D2 do in fact triangulate S x (0,oo) because triangula-

tions are preserved under affine homeomorphisms. One may recall, however,

that full coverage of ~
n 
x [O,cc) and hence S x [O,cc) is only assured

by the assumption -4oo. Fortunately this assumption always holds in

practice, as will now be demonstrated.

Ii.2.13. PROPOSITION. If the sequence (6
k
) in Definition 14.2.10

is bounded away from zero, then t~ —‘~~~~.

Proof: According to the definition of t~ for k > 0, either

t
k 

= ~
k_ l 

+ (2-I) 5
k-1 

~ 
~
c_l 

+ 5k-l

k k-i -2 k- I k-i Ic- ].
t = t  ÷ ( 2  - 6  ) > t  + 6 ,

or 
tk = t

k_l
÷ e

k_l _ 2
_2

� t~~
l
÷ Sk .

In light of Theorem 3.5.14, domain error must be reduced only so

far in order for range error in an approximate equilibr ium gra ph to meet

specif ied tolerances . By accepting a positive level of range error, one

effectively establishes a positive lower bound on the maximum acceptab le

domain error. Since the dynamic construction procedure always seeks the

maximum acceptable domain error, the scale factors which define
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domain error may be (and henceforth will be) considered bounded away from

zero. The claim follows from ~he preceding proposition .

Simplices comprising members of D2 admit the same representation

(y ,4r,a,b ) as those in 
~~ 

i.e. , y is a cent ral vertex, ~ €

a € ~~~~ and S is a scale fac tor . The central vertices here are the

images under u of central vertices of corresponding simplices in D1.

The remaining vertices satisfy the same recursions (14.2.1 and 14.2.5) as

their counterparts in D
1 

provided the canonical unit vectors e
j 

are

replaced by the columns of U for 0 ~ j ~ n. As noted earlier,

the term y(0) must be replaced by S in 14.25 . The formula for

computing v, whose image Uv now points toward the central vertex y

from the closest central vertex a in the next coarsest layer of an

expanding orref ining manifold block, becomes more complicated because of

the transformation U. The components of v for simplices in D
2 

are

given by v ( n)  = -l or +1 according as y( n)/6 is I or 3 ( mod 14)

and v ( i )  = v( i+l) or - v( i+ l)  according as y( i)/6 is 0 or 2 ( mod 14.)

fo r 1 < i < n. The initial component v ( O ) is +1 or -l according

as the manifold block is refining (Type -1) or expanding (Type 1).

Throughout this section the terms triangulation and manifold have

been used interchangeab ly . Strictly speaking, a manifold is a slightly

more general structure . For practical purposes , however, manifolds may

be considered to be induced by-- tri.anguiations- in the following manner.

11.2.lli.. PROPOSITION. Every triangulation in induces an abstract

n-s-ipseudomanifold K on S x [O,oo) whose abstract (n+l)-simp lices con-

stat of the vertex sets of (n+L)-simp lices in the triangulation.
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Proof: Consider any triangulation in D
2 

and the induced collection

of abstract (n÷l)-simplices . Let a = (v0, ..., v~ ) be an

abstract n-simplex in K~ . By definition a is the vertex set of a

facet of some (n+l)-simplex r = conv(a U (v 1)) in the triangulation.

Suppose cony a is also a facet of another (n+l)-simp lex

= conv(a U Cu ~÷1)) in the triangulation. Since aff a is an n-

dimensional hyperplane which cuts the (n÷l)-dimensiona l polyhedron

S x [O,~o), and since the interiors of r and i.~ are disjoint, then

v and u must lie on opposite sides of aff a. Clea rly r and
n-s-i n-s-i

~& are the only (n+l)-simplices of the triangulation which can contain

cony a. Furthermore, if a lies in a facet of S x [O,oo), then r

is the only (n+l)-simplex containing a, since no other simplex of the

triangulation could lie on the opposite side of aff a from v 1 
and

still reside in S x (O,~o). Hence conditions 2.2.1(b) and (c) in the

definition of abstract pseudomanifold are satisfied .

Condition 2.2.1(a) is also satisfied because S x (0) is the image

under u of Cx € C x (O ,~~) : x(O)  = 0), which is a facet of the (n.s-l)-

0simplex in B = -J
3
(O ,2)-~- e0 obtained from the (n.s-l)-simplex (y,gr,a)

in J
3 

with y = (-i, ..., -
~

) and ‘~r = (0 , n , n-I , ..., 1). Finally

since the interface scale factors of the triangulation are considered

to be bounded away from zero, only a finite number of (n.s-1)-simplices

can lie beLow any given level in S x [O,co). Ther efo re ~~~~ satisfies

all the requirements of Definition 2.2.1. 0
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• The def inition and analys is of the dynamically def ined families

of manifolds and D2 are now comp lete . The discussion of these

structures will be concluded with the spec ification of their pivot rules.

These are formulae for determining which (n+l)-simplex in the manifold

shares a particular facet with a given (n-i-I)-simpiex. Hence they

facilitate calculation of the incoming vertex in the fundamental algorithm.

The pivot rul es for and D2 are hierarchically organized into two

tiers corresponding to the global and local levels of the characteriza-

tion of simplices. The global tier determines whether the new simplex

belongs to the current or an adjacent manifold block, and pinpoints a

set of detailed formulae in the local tier. The local formulae are then

applied to obtain an explicit representation for the new simplex.

Any simplex r in a triangulation of class or D
2 

can be

fully characterized by the global parameter k (block number) and the

local parameters (y,s,a,S). Alternatively -r may be expressed directly

as (y_1, y0, y1, ..., y). This latter representation is used to

identify the dropping vertex The new simplex r ’ which shares

all of r ’s vertices except y. will be denoted (y’, ‘1”, a’, 6’). To

determine the parameters of r ’, one first consults Table 14.2.2 to dis-

cover which manifold b lock k ’ contains t ’ and which set of detailed

formulae to use in the next step. One then refers to the indicated set

of local pi~’ot rules to obtain expressions for (y ’, ~
- ‘
, a ’, 8’). In

the event that the local rules are found in Table 11 .2.3, the criteria

i = -1 and i = i-I, or i = n and i = j may hold simultaneously .

The first criterion in each pair should be used in these instances.
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TABLE 14.2.2. Global Pivot Rules for and

Local Tab le
Ic’ Reference

y(0) = t~ 

* 

i = n ~r(n) = 0 k-s-I 14.2~6 (-1 t 0)

= -l y(0) = S i = -1 i~(O) = 0 k-l 14.2.6 (- 1 ~ 0)

otherwise Ic 14.2.3

* 
ir(n) = 0 = -l k-s-I Ii.2.6 (0 t -I)

y(O) = tk i =  n

a(n) = -l = I k-s-I 14.2.6 (0 t 1)

= 0 *(n) ~~ 
~k-l = -i ~~~ 14.2.6 (0 ~ -1)

y(O)= t~’~~ i =  ~
a( n) = 1 = ]. k-i  11.2.6 (0 ~ 1)

otherwise k 14.2.14

y(0)  = t~ - 5 
* 

i = -1 *(O) = 0 k+i 14.2.6 (1 t 0)

= i. y(O) = ~~~~ i = n ~U(n) = 0 k- I. 14.2.6 (1 ~ 0)

otherwise k 14.2.5

* Ic k
If B is latest block, then t

,~
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Also, in Type -l and Type I blocks the centra l vertex pointer V can

frequently be updated instead of computed from the definition. Entries

for v and its successor V t have been inc luded in the tables where

appropriate.

The loca l pivot tables are currently set up for triangulations of

class D2. They can easily be converted to D1, however, by replacing

the column vectors u
j (

taken from the matrix U) by the canonical

unit vec tors e~ of ~~~~ for 0 
~ 
j ~ n. Also, the central vertex

pointer v must be computed by different formulae (given earlier)

according to whether the manifold belongs to or

In closing it is worth mentioning that the local pivot rules in

Tables 14.2.3 - 14.2.6 are really not intended for implementation on a

computer in their present form. Highly efficient but cumbersome variations

of these rules are available which generate the incoming vertex by operat-

ing on only one or two existing vertices of a simplex. These variations,

which are not shown here because of their complexity, were incorporated

in the computer programs developed for this study .

14.3, Error Control Heuristics

In order for dynamic manifold construction to achieve the control

over range error for which it was intended, external requests for particular

block types must be supplied to the construction routines. These requests

are honored each time a new layer is added to the manifold . The genera-

tion of requests naturally occurs in two steps. First the current

1.12
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approximate equilibrium must be analyzed to determine its range error,

and second a decision based on the findings must be made regarding which

request to issue. Both the analysis and decision steps rely heavily on

heuristics.

The maasurement of range error requires heuristics because the

actual consumption and production plans guaranteed to exist by Theorem 3. 5. 14
cannot be computed in practice. Actu.~zl plans are the standards against

which approximate equilibria ought to be judged . In their place plausible

surrogates must be used. To this end the pseudo-production plan is

treated as if it were actual, and the demand point used to label the

designated vertex (~t,r,t) € ~~(~~~) 
is taken to be the actual consumption

plan. (For single-valued demand functions this latter assignment is

precise.) The profitability components of range error then become the

after-tax profitabilities at prices and revenue levels ~5t,r) of the unit

activities comprising the pseudo-production plan (these are ideally zero).

The supply-demand components become the differences between pseudo-supp ly

and the assigned demand values. Tax-revenue components are similarly

measured in terms of r, pseudo-producer taxes, arid consumer taxes at the

assigned demand point. To allow for disparities among the units used

to measure commodity flows, supply-demand errors are calculated as a

percent of total demand .

The rules for converting range error data into control signals

must also be based on heuristics because of certain practical limitations

of the manifold construction process , Chief among these is the fact that

grid size cannot be changed instantaneous ly, even when the algor ithm is
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moving upward through new regions of the cylinder. This constraint exists

because block interfaces can only occur at certain discrete levels and

because refining and expanding blocks must be separated by uniform blocks.

Also, the data structures used to store global manifold parameters would

take up too much space if blocks were switched too often. To get around

these limitations, range error deviations must be detected well before

critical tolerances are reached . Also, corrective action must be strong

enough to restore errors to a level where they are likely to stay put

for a while.

Another difficulty is that range error consists of many components,

each with its wn freedom of movement, while the control mechanism has

only one degree of freedom -- grid size. Hence the decision rules must

respond to that combination of error components in each situation most

likely to induce the entire body of components to move as a whole.

To implement these ideas a control system based on three tolerance

levels -- loose, central, and tight -- was devised . The central tolerance

represents the most desirable level of range error. The loose and tight

tolerances denote, respectively, the maximum and minimum permissible

values. Different sett4.ngs of the three levels can be made for different

error components. The computer programs, for example, use one set of

tolerances for profitability errors and another for supply-demand errors.

Whenever selected components of range error stray beyond the loose

or tight tolerances, a manifold refinement or expansion is requested

until specific components are brought back to the central tolerance level.

The control mechanism responds to any error component that violates a

1111.
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loose tolerance, since the validity of the approximation is jeopardized

by such deviations. Tight tolerances, on the other hand, trigger correc-

tions only when all error components cross them. Asyumietr~ between the

response criteria is necessary to prevent both sets of tolerances from

being violated simultaneously.

The detailed decision rules used to generate manifold type requests

are shown in Table 14.3.1. All cases presume that a demand-labeled

vertex exists. If not, then the indicated request is overridden by a

Type -l request (or Type 0 if the current block is Type 1).

TABLE ls- .3.l. Manifold Request Decision Rules

Current Status of Requested
Block Type Range Error Components Block Type

-.1 Some above central tolerances -l

All below centra l tolerances 0

0 Some above loose tolerances -l

All below tight tolerances I

Otherwise 0

I Some above central tolerances 0

All below central tolerances I

115

~

_ : -

~

-‘

~

_

~ 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~ 

- - -  

~~~~
...



~puu~r~~ ~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~ ~t~~— —

14.14. Structure of Computer Programs

A flow diagram depicting the major processing sections of the

computer programs used to implement the economic algorithm appears in

Figure 14.14.1. The diagram concisely summarizes the logic of the algorithm

and serves as an introduction to the software employed in the numerical

experiments of Chapter 6. All important analytical functions are dis--

charged in the sections entitled manifold pivot, label genera tion, label

system pivot, and tolerance checking. The remaining sections merely

provide administrative support.

The data input and initialization section supplies the program

with two kinds of parameters -- economic and operational. The latter

group includes tolerance levels, basis re-inversion frequency, and

equilibrium report frequency. Main program data structures such as the

right hand side p of the label systeu s and the demand offset function

c(.) also get initialized in this section. Data structures controlled

by subroutines get initialized during the first subroutine call. The

final task performed in the initialization section is to print out all

input parameters for purposes of verification.

The manifold pivot section maintains a representation of the current

(n+l)-simplex t~
’ € K~

’1. Upon receipt of the position of a dropping

vertex from the label system pivot section, a new (n-i-l)-simplex ~
k+l

is generated according to the pivot rules in Tables 14.22 - 14.2,6. The

incoming vertex gets passed to the label generation section. In

the process of computing v~~
2 the program attempts to honor the latest

manifold type request issued by the tolerance checking section. This may
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[START 
)

‘I,
I 

I~~TI~~~~~ TI0N Main Program

)[~ MANIFOLD PIVOT j Subroutine MAN PVT

_ _ _ _ _ _

T LABEL GENE RATION Ma in Program

\1P
LABEL SYSTEM PIVOT Subroutine SINPVT

~1~[ BASIS RE~ INVERSION Subroutine INVERT

TOLERANCE C}IECKING
1 

Main Program

[~
EQUILIBRIUM REPORT

] 
Main Program

NO ECONOMY
REAcHE: ’

(
STOP )

‘4

Figure 14.14,1. General f l ow diagram for programs
implementing economic algorithm .
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entail the creation of a new block of simplices. If so, then the global

parameters needed to characterize the block are recorded in resident da ta

structures.

The label generation section assigns to the incoming vertex

an economic label L(v~~
1
) according to 3.3. 12. In order to generate the

label, the first component of ~
k÷1 (interpreted as t ’ € (O,oo)) gets

converted to an econoury index t € (0,1] by a piecewise linear function.

0
This function Sets t = 0 unLess t ’ exceeds the level t (determi.ned

by the tolerance checking section) where the economic deformation begins.

The level t0 marks the end of the first manifold block B° and was

earlier denoted 21. Any excess of t ’ over t
0 gets multiplied by a

vertical scale factor to become the econonrj index t.

The label system pivot section manipulates the linear inequality

systems L(a
k
)y = p, y > 0 associated with ri-simplices traversed

by the algorithm. The incoming label vector L(v~~
1
) is lexicographically

pivoted into the basis of the label system corresponding to the current

n-simplex ci
k
, thereby driving out a column corresponding to one of

vertices. The position of this dropping vertex gets passed to the manifold

pivot section for use in computing the next (n+l)-siuip lex. Operations

on the linear inequality systems are performed via the revised simplex

method using the explicit form of the inverse basis. More sophisticated

basis-handling techniques such as LUD decomposition appear to promise

only modest improvements because of the need for full lexicographic pivots.

The basis re-inversion section periodically inverts the label system

• matrix L(~~) to obtain a more accurate inverse basis. The numerical
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technique used for inversion is Gauss-Jordan elimination with row rearrange-

ment. Re-inversion occurs every N iterations, where N is an input

parameter.

The tolerance checking section extracts from the label system

L(cl
k
)y = p, y > 0 an approximate equilibrium for the economy represented

by some demand-labeled vertex of 1k. Range error componen ts for this

approximation are computed one at a time until, an unambiguous manifold

request can be determined from Table 14.3.1. The request is then relayed

to the manifold pivot section for consideration during generation of the

next (n+l)—simplex . When the first satisfactory approximate equilibrium

is found for the initial economy &(O), the tolerance checking section

signals the label generation section to begin the economic deformation.

The equilibrium report section produces two kinds of printed reports.

The first summarizes in a single line the current state of the manifold,

the n-simplex cyk, and the label system associated with crk. The frequency

of this report is controlled by an input parameter. The second report

lists all details of the current approximate equilibrium. It is produced

each time the economy index changes by a pre-specified increment. Full

equilibrium reports typically appear interspersed among the more numerous

one-line summaries.
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CHAPTER 5

EXAMPLES OF ECONOMIC DEFORMATION S

The economic model of Chapter 3 was posed in terms of market

aggregates possessing various abstrac t properties . This

recondite approach was adopted to ease the notational burden in proofs

and allow for maximum flexibility in applications. To justify the use of

such abstractions, however, and provide insight into the range of situations

covered, concre te examp les are required. The purpose of the present

chapter is to examine some typical microeconomic formulations which

give rise under deformation to the sorts of aggregates assumed in

Cha pter 3.

The examples treated here include one detailed model of consumption

and two of production. The consumption model features the usual assort-

ment of consumers, consumption sets, preference orderings (reflected in

utility functions), and initial endowments. In addition each consumer

holds claims to revenue disbursements and pays taxes. Many of these

components may be deformed to sweep out a family of economies . Upon

aggregation the consumer-specific components yield a market demand

correspondence Z(.), an initial endowments function w(.), and a tax

function Ø( .) which satisfy all the requirements of Chapter 3.

The production models feature a finite group of sectors, each

with its own set of non-slack unit activities and unit tax rates . These ,

too, may be deformed across the family of economies. The end product in

each of the models is an aggregate activity correspondence /3(.) and a

tax function r(~ ) which satisfy all the conditions assumed in Chapter 3.
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The examples covered in this cha pter were selected because of

their widespread use in empirical microeconomic studies. Consumer demands

are derived from CES utility functions, and incur ad valorem consumption

taxes of the type described in (15], [1.9]. One of the production models

features the well-known activity analysis formulation of conversion

technology . The other employs multi-factor CES production functions to

describe input-output relationships in each sector. Both production

models incorporate ad valorem production taxes of the type used by Shoven

in [16], [17].

Many variations and extensions of these examples are possible within

the framework of the general theory. Even more can be envisioned which

deviate from the general theory only in their behavior on or near the

vertical facets of S x T. These, too, can often be solved by the

economic algorithm. The examples considered below, however, suffice to

describe all the numerical experiments reported in Chapter 6.

As in Chapter 3 the examples inhabit a space of m4-l commodities

indexed i = 0, ..., m and n-m revenue systems indexed i = mi- i, ... , n.

Some of the symbols of Chapter 3, notab ly ~~~~~~~~ and are reused

here with different meanings.

5.1. CES Consumption -

The CES utility function originally appeared as a production function

in a paper by Arrow, Chenery, Minhas, and Solow (13 . Many of its properties

make it both appropriate and expedient for use in empirical models of

consumer preferen ces, although certain deficiencies such as the absence
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of an income effect must be tolerated . The function is defined on the

non-negative or thant of commodity space and assumes the bas ic form

(5.1. 1) u( x) = {
~ 

a(t x(i) ~~~~~~~~

where b is the elastici ty of substitution and a is a vector of

weighting factors (also called demand intensities). For values 0 < b < I

the function can only be defined on the boundary of R
IIW1 

via limits

from the interior. To insure that u is non-decreasing, the weighting

vector a must be non-negative, and to exclude trivial cases only non-

zero weighting vectors will be considered. Whenever a(i) > 0, good i

will be described as “desired” by the consumer whose preferences are

represen ted by u.

Many values of b are technically poss ible. However, for b < 0

the function is convex, which violates the principle of decreasing marginal

utility . Negative values of b are, therefore, excluded. For b > 0

(b ~ 1) the function is concave and hence admissible. (Bo th proper ties

follow from the generalized Minkowski inequality in Section 1. 17 of [3].)

For the critical value b = I, u(x) is undefined in the above form.

However , if ea = 1, then letting b —
~ 1 and app lying L’Hospital’s

rule yield s

(5.1.2) u(x) = It X (~~)
a(i)
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which is the familiar Cobb-Douglas utility function. This may be proven

concave via the gradient inequality and the generalized arithmetic-geometric

mean inequality appearing in Section 1 lii. of [3] .

Values of b between zero and one correspond to comp lementary goods

while values of b > 1. connote substitutes. The extreme cases of perfect

complements and perfect substitutes are covered by limiting forms of 5.1.1

as b -4 0~ and b —~~~~, respectively . Only finite values of b will be

admitted in models treated here. A concise stmmary of the properties of

5.1.1 for 0~ < b <~~ appears in Section 3-6 of [10].

The reason for introducing the CES utility function is to determine

how a rational consumer whose preferences are reflected in this function

makes his purchase decisions. Suppose such a consumer has income ~ > 0

to spend for goods and services and must pay prices p € Rmi-~ for these

items. His purchase decision problem is

(5.1.3) maximize u(x)

subject to px <~~

This is a well-posed concave program, so either there exists an optimal

solution ~~, or else the problem is unbounded . First note that if a(i) = 0,

then u is independent of x(i). Since x(i) may cost money, it is

always optimal to force x(i) = 0. The solution is then independent of

p(i).
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Now consider the case where a >> 0. Suppose all prices are

positive . If ,.~ = 0 then the feasible region consists of the single

point x = 0. If ~.i > 0 then 5. 1.3 is a bounded concave program over

a feasible region with non-empty interior. Applying the Kuhn-Tucker

sufficient conditions to 5.1.3 (with x restricted to the interior of

where u is differentiable) yields the unique optimal solution

-
~ ~~~~ — 

(arn) aCm) \ ________________

— t b’ ~~ ‘ b 1 m
‘p(O) p(m) ‘ 

~ a(i) ~(j)
1_b

i=O

Separate analyses are required for the cases b ~ 1 and b = 1 because

of the different functional forms of u, but the outcome is the same,

In light of earlier remarks expression 5.1.14 also gives the optimal

solution to 5.1.3 if ~ = 0, or if some of the a(i) = 0. It is even

valid when the prices of undesired goods are zero, prov ided terms of

the form o/o are interpreted as zero. If, however, a desired good is

free and the consumer has positive income, the purchase decision problem

is unbounded (sinc e ~u/~x(i) >0 for x >> 0). For b > 1 such

problems are unbounded even if p. = 0.

Despite the fact that the consumer ’s purchases cannot be specified

when desired goods are free, the economic model of Chapter 3 requires a

market demand correspondence defined for all price combinations. The

correspondence must satisfy certain technical conditions to insure that

the algorithm behaves properly . To meet these technical requirements,

artificial values are assigned to demand when desired goods are free.
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The following proposition indirectly j ust ifies these assignments by

insuring that artificial values cannot be approached by demand labels .

5.1.5. PROPOSITION. The optimal solution ~ given in 5.1.14

diverges to +~~ in norm as the prices of any desired goods approach zero

from above, provided ~.i. > 0 and the other prices remain boiaided.

Proof. Let (~
k) be an arbitrary sequence of prices converging to a

limit f having zero components corresponding to desired goods. It

k ksuffices to show that (p ) has a subsequence along which lI~ II — ‘a .

Let ~ (i : good i is desired and p
x
(i) 0). Since ~ >0, it is

enough to show that for some i £ ~ ~IC(j)
b ~k(j)

1_b 
-+0 for all j € ~

along a subsequence. Suppose this does not occur. Then along every

. -_ k b ic, 1-bsubsequence, for each 1. ~ there ex~,sts j  ~ s.t . p (1.) p ~j )  ,‘+ 0.

Choose and i2 
from ~ s.t. p

k
(i1)

b ~k(j )
l b  

,4Q and then extract

a subsequence along which ~k(j )
b ~k(j

2)
l_b 

> E
1 2 >o~ Now choose

1.3 € ~ s.t. ~k(j
2)

b ~k(1.
3
)

1.~~ ,‘.i O along the subsequence, and then

extract a further subsequence along which ~k(j)
b ~k(~~ )

l_b 
.? 
~~~ 

>0.

Continue to build the sequence 
~~~~~~ 

~2’ 
L
3~ 

... until one of the i~ is

repeated ( this mus t occur since ~ is finite). Consider the segme nt

i~, i~~1, ..., i
2 

where = i~. Along the deepest subsequence

125

L I
~ .U ~~~~~~~~~~ . - _

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ -



- ~~~~~~~~~~~~~~~ .~~~ —— ~~~~~~~~~ —

k k k
~ (ii

) ~ 
~~j+l~ 

... 
~~ 
(i~)

k b k . I - b k .  b k 1-b k . b k 1-b
= p ( i

i
) P 

~~j +l~ ~ ~~j +l~ 
p ( i . e ) P ( i ~g.. .1 )  p (i2)

.? Ej ~~~~~ ~j+l,j+2 ~2-l,~ 
>0

But this contradicts the fact that ~k(~~ ) ... pk(j 2 ) -+ 0, thereby —

establishing the proposition. 0

When b < I a direct calculation shows that ~~(i) — for

i € ~ regardless of the sequence (p
1
5. In this case the preceding

argument is unnecessary. When b > 1, however, a given component ~1c( i)

can be made to approach any positive limit or diverge to +~~ by a suitable

choice of (~
k
), The proposition shows that regardless of the sequence

some component ~k(1.) — *+~~ for 1. € ~~~.

Enough preliminaries have now been established to permit the formal

specification of the CES consumption model for the family C~
(t )3

~ € (O,l]~
Each economy e(t) contains M groups of consumers indexed j = 1, . . - , M.
Each consumer group is characterized by four sets of numbers:

(a) Initial commodity holdings w .(t) €

(b) Revenue share factors ~~~(t) € R
Th
;

(c) A CES utility function of the form 5.1.1 with substitution elasticity

t) > 0 and weighting factors a~ € Rm
~~\(O) ( for b~ ( t)  = 1

the Cobb-Douglas form 5.1.2 with ea~ = 1 is presumed);
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(d) A matrix € m ) i ~i-~~)  of ad valorem commodity tax rates.

Each row corresponds to a revenue system and each column to a

commodity.

The t-superscript (or argument) designates a consumer characteristic

that can be deformed across the family of economies.

The initial endowments and revenue shares determine consumer income.

At prices and revenue levels (xi ,r) consumer group j  of economy ~~~t)

has an income of ~w~(t) ÷ rp . ( -t ) .  This income is used to support con-

sw-Isumption and pay taxes. Given a consumptLon pattern x t R the

expenditure for good i is ~(i) x(i), and the tax levied by revenue

system 2 is ~~(2,i) ~(i) x(i). Consequently the effective price paid

for good I is p (i) = (1 + e~~( . ,i)) ~t (i). Faced with these effective

prices the consumer deploys his income so as to maximize his satisfaction.

The result is a demand response of the form 5.1.14, namely

(5.1.6) ~~(i~,r,t) = (~~(o; ~,r,t), . .., ~~(m; i ,r,t))

where
a.(i) itw.(t) + rp.(t)

‘ /- . ~~ ‘ _
— 

k /J u .~~ t l b
p~(i) 

3 
~ a~(2) p~(2)3 2=O J

and

p~ ( i) = ( 1 + e’X-’~ ( .
, i)) sr( i) , for 0 < ~ m

As noted earlier the function is well-defined only for effective

pr ices p
~ 

which have positive components corresponding to desired goods,

or equivalently for commodity prices g with the same property . In
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order to extend the definit ion to the entire cylinder S x T, let

= Ci : good 1. is desired by some consumer in g(t)J. Put

= U 
~ 
F1., and arbitrarily define ~~k,r,t) a for (~t,r,t) € F t .

i€~Expression 5. 1.6 remains valid for ( i~, r , t) € (S x ~~~~~~ Since ~~~
depends on the preferences of all consumers in &(t), artificial values

may override the legitimate demands of particular groups. None of the

artificial values, however, can be used or even approached by the economic

algorithm because of Proposition 5.1.5 and the relationship between

consumer preferences and endowments assumed below.

Consumption taxes are readily computed for values of (it ,r,t) in

(S x 1)\F
~~
. The (n-m)-ve ctor of such taxes paid by consumer group j

of economy e~(t) is obtained by suimning for each revenue system the

amounts levied on different commodities, i.e.,

(5.1.7) ~~~ ~~ , r , t) = 

i=0 
O~(.,i) xt (i) ~ .(i; it , r, t)

For values of (it ,r,t) in F it is necessary to assign artificial

values to taxes to satisfy certain technical conditions. For j =

put 
~~~~ it , r, t) a 0 for (it , r, t) € 

~~~ 
As in the case of demands,

these artificial values never arise in computations.

The aggregate components which describe the consumption side of the

general economic model are obtained by summing their consumer-specific

counterparts over all consumer groups. The components in question include

initial endowments w(.), the market demand correspondence 
~

(. ), and

the consumer tax function Ø (.). They are defined as follows:
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( 5.1.8) w(t) = ~ w~(t) ;
j=l

N

(5.1.9) ~(it ,r,t) = !~. ~~(ir ,r,t) ;
j=l -~

N M
(5.1.10) ø(~ ,ic,r,t) = Z ø.(~~, ~t , r, t) , where ~ = E

j=l -~

The tax function 0 is well-defined because the representation

N
= ~ ~, . is unique for (it ,r,t) €(S x T)~F ~~

, and all taxes are zero.1

for (it ,r,t) € F t.

In order for these aggregate components to satisfy the conditions

assumed in Chapter 3, certain restrictions must be placed on the ~m rameters

that characterize the consumer groups. Sufficient conditions are provided

by the following four assumptions.

5.1.11. ASSUMPTION. For each consumer group j = 1, ... , N the

parameters w~(t), ~~~(t), b
3
(t), a~, and vary continuously in t.

5.1.12. ASSUMPTION . The set of goods desired by each consumer

gioup does not change throughout the family of economies.

N
5.1.13. ASSUMPTI ON. For each t € (0,1] , E ~~.(t) = e.

5.1.114-. ASSUMPTION. For any desired good i and index 2 € {O,...,n)

distinct from i, there exists a consumer in e(t) who desires good

and possesses a positive endowment (share) of good (revenue system) 2.
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The last assumption he lps insure consistent behavior of as it

diverges to +~~. It can be weakened somewhat, but not eliminated entirely.

The remainder of this section consists of demonstrating that w(.),

~
( . ), and Ø (.) satisfy the most stringent conditions imposed in Chapter 3.

Applicable conditions will be checked for each component in turn.

Properties of w(.)

3.14.1: Continuity follows from Assumption 5.1.11.

Properties of Z(.)

First it is useful to note that because of Assumption 5.1.12, the

set does not depend on t. The superscript will henceforth be

suppressed . Because of Assumption 5.1.11, is continuous as well as

single-valued on (S x T\F~. On F~ the correspondence assumes the

artificial value R~~
1
.

3.1(b): Degree zero homogeneity of ~~( t )  in (ir,r) results from the

same property of each 
~~~~ 

wh ich may be ver if ied d irect ly from ~ .l.6.

3.14.2(a): is u.s.c. on S x T because it is single-valued and

continuous on (S x and assumes all possib le limiting values on F~.

3.14.2(b): Each image set ~ (i~,r,t) is either a singleton or ~~~~ and

is hence convex.
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3. li- .2(c) :  Walras Law for it >> 0 follows directly from expressions

5.1.6 and 5.1.7 (Ass umption 5.1.13 is required a~ the end).

3 .14.2 (d) : All components of are bounded below by zero.

3.5.2: Put £(a) = £(a) f l (S x~~\F8. Since is single-valued and

continuous on (S x TXF~, it is clearly l.s.c. and bot’nded on

Furthermore, since (S x T~\F~ contains all points (it ,r,t) in S x T

with it >> 0, part (a) also holds. It only remains to show that .c( a)

is closed. Consider any sequence ~~~ rk, t
’
3 in ~(c~) converging

to a point (ir ,r,t) in S x T. Since .t(cz) is closed (by u.s.c. of

it must contain (it ,r,t). Suppose (n,r,t) € .t(a) fl F~. At least

one component of (1t ,r) is positive, and at least one of the components

corresponding to a desired good approaches zero. By Assumption

5.1.111 there is a consumer in e(t) who desires the free good and has a

positive endowment (or revenue share) corresponding to the positive

component of (it ,r). The income of this consumer is bounded away from

zero for large k, so by Proposition 5.1.5 his consumption, and hence

total consumption, diverges to +~~ in norm along (~t
k
, rk

, tk). This

contradicts the boundedness of on ~ (c~). Hence (it,r,t) € ~ (a) ,
proving that the set is closed.

3.5.3: Diam~ ~(it,r,t) = 0 for it >> 0 since is single-valued at

these points.

The argument used to verify Condition 3.5.2 gives a precise meaning

to earlier remarks concerning the inaccessibility of artificial values
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of ~ . Specif ically, any sequence of bona-fide values of (e.g.

demand labels) diverges to +~~ in norm as pr ices approach areas where

artificial values are assigned . Since demand labels must remain bounded

(c .f. Step 7 of 3.14.15 and Step 8 of 3.5.11), the artificial values are

inaccessible.

Properties of Ø (.)

3.14.6(a): The non-negativity of 0 follows from that of and ~ .

3.14.6(b): Consider a point (~ ,it,r,t) in U ~(v) x Cv), and let
v€

~~k ~
k rk, t

k
) be a sequence in this union converging to (~ ,it,r,t).

If (it ,r,t) € (S x ~~~~ then eventually (,~
k
, ~~ t1

5 c(S x T~~F~~ because

F~ is closed . Hence Ø(~
1(
, ~

k r
k
, t

k
) 0(~~i t r t )  by the continuity

of 
~~

. on (S x T)~F~ and the continuity of in t for I < j <M.

If (it ,r,t) € P~, then since —~~~ the argument used to verify

Condition 3.5.2 forces <it
1C
, ~~ ~

k
> to eventually lie in F~. Hence

for large k, Ø(~
k 

~
k rk, t

k
) = 0 =

3.14-.6(cl: Since at least one good is desired by every consumer, all

points (O,r,t) lie in F~. Hence Ø(~ ,O,r,t) = 0 by definition.

3.14.6(d): Since is sing1e-~’~’lued on (S x 1~\F~, 0 is trivially

affine on ~(v) x (vJ for v € ~ x 1)\F~. For v € F~, 0 is identically

zero on ~(v) x (v] and hence affine there, too.
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All requisite properties of the market a gregates w(.), Z (.) ,  and

Ø( .)  have now been ver ified .

5.2. Activity Analysis Produc tion

The production model described in this section is one of the

simplest possible examples of the general CRS technology postulated in

Chapter 3. Like conventional linear programs , the model treats production

as a finite set of activities operated simultaneously at non-negative

levels. Activities can use multiple inputs and produce multiple outputs.

Unlike most LP’s, however, the entire technology matrix can be varied

parametrically.

Only two sets of parameters are required to specify the activity

analysis model. Let t € [0,1] be an economy index. Production in e.(t)

is characterized by

(a) N non-slack production activities x~, ..., x~ €
(b) N matrices r~, ... , r’~ € R~

n_ m)x(sw
~
1) of ad valorem production

tax rates .

The matrices are associated with the non-slack activities on a one-to-one

basis. Each row of corresponds to a revenue system, and each column

to a commodity . As required by the general model, free disposal is implicit

in the technology of every economy.

The non-slack production activities may be grouped together into

sectors or assigned to particular firms in any desired manner. Since

CRS technologies generate no profits at equilibrium, ownership patterns
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are irrelevant to economic behavior. For expository convenience, however,

the N activities available to each economy will be considered in this

chapter as separate sectors.

Collectively the individual sectors define the non-slack unit

activity correspondence

(5.2.1) ~~(t) = (x~, .. , x~)

Given a unit activity b € ,~(t) , the vector of unit tax liabilities

incurred by b at prices (l t ,r) is

(5.2.2) y(b,ir,r,t) = E F~~~,i) it (i) x(i)I

twhere b = x2. If b resides in more than one sector, then the tax

rates in the overlapping sectors are required to agree. This insures

that r is well-defined . The constraint can be eliminated, however,

by the simple extension of the economic model described in Section 3.6.

To insure that 
~~~ 

and r(•) satisfy the conditions assumed

in Chapter 3, two restrictions must be placed on the defining parameters.

5.2.3. ASSUMPTION . For 2 = 1, ..., N the parameters x~ and

vary continuously in t.

5.2.14. ASSUMPTION . For each 2 = I, ..., N the activity

uses an input which cannot be produced in any economy in a neighborhood

of t.

l3li.
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The latter assumption prevents nearby economies from producing

something out of nothing, but is clearly m uch stronger than necessary to

achieve this effec t . It has the advantage, however, of being easy to

check and is broad enough to encompass the numerical examples considered

in the next chapter.

The two preceding assumptions are suffic ient to force 8() and

r (-) into the mold of the general theory . Pertinent conditions will

be checked for &(- )  and r(.) in turn.

Properties of j9(.)

3.14.3: Each x for 2 = 1, ~~~~~~ N is a continuous function of t on

[0 , 11, and hence a continuous bounded correspondence. Thus a(t), the

union of these correspondences, is also continuous and bounded.

3.11.14: According to 5.2.14- each activity x~ contains a component x~(i) <0

such that for 1 
~ 
j <N , x~~(i) ~ 0 on N~ . Since x~ is continuous

in t, there is a sub-neighborhood of N on which x~~(i) < 0. Let

N
t be the intersection of these sub-neighborhoods for 2 = 1, ... , N.

Then no collection of activities drawn from the economies spanned by

N
t can be operated at semi-positive levels without inputs. In view of

Remark 3.11.5, Condition 3.14.14 holds.

Properties of i C )

3. 1( e): Degree one homogeneity of r in (n,r) is an immediate

consequence of i’s linearity in these variables.
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3.14.7(a) : Since 
~ 

0, the non-negativity of r is apparent from

5.2.2. 
-

3. 14.7(b) : Consider (b ,it ,r,t) in U 8( t) x S x (t ) , and let
t€T

(b~
C
, ~~ r’~, t

k
) be a sequence in this union converging to (b ,it ,r,t) .

Clearly bk must lie in some sector 2 infinitely often. Thus

k k
b = x~ -~x~ = b along a corresponding subsequence. Equation 5.2.2

holds along this subsequence, so the continuity of in t implies

y(b
k
, it~

C
, r

k
, t~) —si(b,it,r,t). This suffices to establish the continuity

of r on U 8(t) x S x (t).
tET

3.14.7(c): It is obvious from 5.2.2 that r(b,O,r,t) = 0.

All requisite properties of 8(.) and r(~) 
have now been ver ified.

Before leaving this section it is worth mentioning how labels are computed

in the activity analysis model. Given a vertex (it,r,t) € S x T with

(it ,r) >> 0, one simply evaluates itx~ - ey (x~, it, r, t) for each sector

2 in turn, stopping when a positive value is found. If no such values

are found, then a demand label is installed . Otherwise the label becomes

t

L(it,r,t)  = 

[ 

—x 2
y(x2, it, r, t)

where 2 is the f i rs t  sector earning a positive af ter- tax prof i t .
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5.3. CES Production

The CES production model resembles the activity analysis model in

that every economy ~.(t) admits a finite number of sectors. Each sector

of e(t), however, has available a continuum of unit activities rather

than a finite number. This permits continuous substitution among input

factors as commodity prices vary. Ad valorem production taxes identical

to those of the previous section are imposed on all unit activities.

The technology of each sector is de termined by a CES production

function of essentially the same form as the utility function employed

in Section 5.1. In a typical sector the mi-I counnodities are partitioned

into a non-empty set a of inputs and a non-empty set ~ of outputs.

Feasible production plans x € Rmi-I have non-positive input components

x(a) and non-negative output components x(~ ). Inputs and outputs are

related by

(5.3.1) x(~~) o(~ ) z(c, d, x(a))

where o(~~) is a fixed vector of non-negative output levels and

r d 1
(5.3.2) z(c, d, x(a)) = ~ c(iflx(i)l~ 

)/

I. i€a

is a scalar-valued CES production function. The parameters of z are

confined as in Section 5.1 to values that yield concave non-decreasing

functions, i.e., substitution elasticities d > 0 and factor weights

c > 0. (The expression for z is superficially different from 5.1.1 in

- 
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that the weights are unexponentiated.) For d = 1 the Cobb-Douglas

form with cc = 1 is used . Since any input with c( i) = 0 can be

reclassified as an output with o(i) = 0, all factor weights are assumed

to be positive.

Output proportions are unaffected by changes in inputs -- only
output levels vary. Noreover, the technology exhibits constant returns

to scale because of the degree one homogeneity of z in x(cr). Hence

the relationship between inputs and outputs may be completely summarized

by any set of “unit” activities consisting of one point along each ray

connecting the origin of Rm~~ with a feasible production plan. The

particular set of unit activities selected for use here are those lying

on the unit 2 -sphere. Specifically, the non-slack unit activities

in a typical sector consist of the set

X(o(~~) , c, d) = (x € R
m.
~~ : lixiL = 1, x(a) < 0,

and x(~ ) = o(~ ) z(c,d,x(cr)))

The general model presumes that all production plans in pos X(o(~ ),c,d)

are technicafly feas ible. Actually only a few such plans satisfy 5.3.1.

It will later be demonstrated, however, that any activities from the

same sector appearing as labels will be virtually identical, provided

the vertices bearing the labels are close together. Hence any production

plan formed from such labels will closely resemble a true CES production

p lan.
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The manner in which the activity set X( o(~ ), c, d) moves in

response to changes in the defining parameters is of interest in deter-

mining the kinds of deformations possible in the CBS model. The following

proposition insures that X( .)  possesses sufficient regularity to

tolerate a wide range of technological deformations .

5.3.3. PROPOSITION. The set X( o(~ ), c, d) varies continuously

as a correspondence in o(~ ), c, and d over all values of o(~ ) ? 0,

d > O ,and c > >O s.t. e c = 1 .

Proof: Upper semi-continuity will be demonstrated first. Let

(0
k
(~ ) 

k 
dk) be a sequence of admissible parameters converging to

the admissible triple (o(~ ), c, d), and let xk~~+ x  wl~ere

€ x~ 0
k
( ~),  ~

k
, d

k
). Clearly ~x 1 = 1 and- ~:( a) <0. Since

—~x(~ ) and 0
k
(~ ) -+ o(~ ), all that must be established is that

z(c
1
~, d

k
, x

k
(a)) -+ z(c, d, x(c~)). For d > 1 Expression 5.3.2 is

Jointly continuous in (c, d, x(a)), so the desired convergence takes

place. For d < 1. the same reasoning applies when x(a) << 0. If

some component of x(a) is zero, replace that component by ~ > 0,

and the resulting expression dominates z(c~, d
k
, x

1
~(cx)) for large k.

As k —~~~ the dominating expression converges in the normal manner.

By shrinking € —~0, lim sup z(c
k
, d

k
, x

lt
(cx)) is forced down to zero,

which is the imputed value of z(c , d, x (a) ) .

For d = 1 separate arguments are required for subsequences of

(d~5 less than, equa l to , and greater than one. The case where dk 
= 1

1.39
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is trivial. The other cases may be hand led by sandwiching z(c
k
, d

k
, x

k(a) )

between two similar expressions with constant input levels and weights.

The bounding expressions converge to Cobb-Douglas forms as k —‘~~~ via

L’Hospital’s rule, and the limiting sandwich collapses to the desired

value . The sandwich is constructed from input levels (Ix (i)I 4. €)~ and

factor weights c(i) ± B, where the plus (minus) sign applies to weights

on perturbed input levels above (below) the median. The condition eck = 1

makes the weight perturbation work. The detailed argument is quite

tedious and hence omitted.

Lower semi-continuity is established next. As above suppose

(0
k
(~ ) ck, d

k
) converges to (o(~ ), c, d), and let x € X(o(~ ), c, d).

Define xk(a) = x(a) and let x
k
(~ ) 0k(~~) z(c k

, dk
, x1

~(a)) .  Then
k k k k kx / l Ix ~ 

belongs to X(o (p) , c , d ) ,  and by the same reasoning used

to establish convergence in the upper semi-continuity proof, xk(~) —~x(~ ).
k . k kHence x —, x, and since jIxIl~ = 1, x / 1k II —~ x~ 0

Now that the technology of a typical sector has been investigated,

a comprehensive specification of the CES model is possible. Each economy

~~t) for t € [0, 1] has N production sectors indexed 2 = I, ..., N.
Each sector is characterized by the following parameters:

(a) Non-empty sets of inputs a2 and outputs 
~2 

satisfying

U = (0, ..., mJ. (N ote that these sets are independent of t.)

(b) A vector o (
~ 2
) € ~

card 
~2 of unit output Levels.

(c) A CES production function of the form 5.3.2 with substitution

elasticity d
2(t) 

> 0 and factor weights c~ (a
2) satisfying

c >> 0 and ec~ = 1..

1140



~d) A matrix € R
_ m (

~~
l) of ad valorem tax rates. Each row

corresponds to a revenue system and each colm.wm to a coumiodity.

In terms of these parameters, sector 2 of economy &(t) possesses

a non-slack unit activity set 82 ( t )  = X(o ~ (~~2), c~ , d2( t ) ) .  C ombining

these activity sets for all sectors yields the economy-wide activity
N

correspondence 13(t) = U (3
2
(t ) . As always the activities in 8(t)

2=1
are complemented by the m4-l free disposal activities.

Given a production plan b € ,~( t), the vector of unit tax liabilities

incurred by b at prices ( i t ,r) is

r(b,xt,r,t) = 

~~~~~ 

r~(.,i) ~~( i)  Jb (i)J

where b € 82(t)
. If b belongs to more than one sector, then the tax

rates in the overlapping sectors are presumed to agree. As no ted in

the previous section this restriction can be lifted by extending the

general model in the manner described in Section 3.6.
Sufficient conditions for 

~
3(.) and r(~ ) to satisfy all require-.

merits of Chapter 3 are contained in the following two assumptions.

5.3.4. ASSUMPTION. For 2 = 1, ..., N the parameters

c~ (a
2), 

d
2(t), 

and vary continuously in t .

5.3.5. ASSUMPTION. For each sector 2 and economy e(t) there

-
‘ is a neighborhood N~ of t and a set of inputs, at least one of which

is used by every activity in sector £ for all economies in N~, and

which cannot be produced by any economy in N~ .

11~1
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The latter assumption, like its counterpart in the activity analysis

section, is much stronger than necessary to insure technical realism,

yet broad enough to cover a wide class of examples. With these assumptions

in hand the activity correspondence /3(.) and tax function r ( •)  are

readily shown to fit the pattern of the general model.

Properties of ~g(.)

3.4.3: Proposition 5.3.3 in conjunction with Assumption 5.3.14. implies

that &
2(~
) is a continuous correspondence w.r.t. t. Since the images

lie on the unit 2 -sphere of ~~~~ 82(•) 
is also bounded.

Consequently the union j3(.) is continuous and bounded.

N
3.4.4: Let N

t 
= fl N~, and consider any set of activities drawn from

2=1

19(N
t). By Assumption 5.3.5 each activity in the set requires an input

which cannot be supplied by the others. Hence no combination of the

activities can be operated at positive levels in the absence of external

resources. In view of Remark 3.4.5 , Condition 3.14.14. holds.

Properties of r(~ )

The tax function r is identical in form to the one defined in the

previous section and exhibits the same properties for exactly the sathe

reasons •

The process of generating labels for the CES production model is

much more complicated than the activity analysis model because of the

continuum of unit activities in each sector. The object, of course, is

lli-2
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the same: given a vertex (~t,r,t) with (i~,r) >> 0, find an activity

in 13(t) with positive after-tax profits or show that none exists. The

search for a profitab le activity m~.st be conducted on a sector-by-sector

basis.

Consider the after-tax profitability of a unit activity x in

sector £ of economy e~(t). At prices it >> 0 activity x earns

(5.3 .6) xx - ey( x,x , r , t) = itx 
~~~ 

er~( ,i) ~(i) tx(i)I

= 
~~~~) 

x(~~) - ~ er(.,i) x(i) jx(i)(

+ it(a) x( a) - ~ er(.,i) ~t(i) )x(ifl
i€a

where the subscript 2 and superscript t have been suppressed in the

last expression (and will continue to be). The sign of 5.3.6 is clearly

the same for all positive multiples of x. Suppose the substitution

elasticity d > 1. Then llxII~ = I =~~ x 4 0 ~ x(cx) 4 0 ~ z(c,d,x(a)) > 0 ~ a

positive multiple ~ of x exists such that z(c, d, ~t(a)) = I. Hence

the search for a profitable activity in this sector may equally well take

place on X’ = (x € R~~
1 : x(~~) = o(~~), x(a) < 0, and z(c,d,x(a)) = 1).

The same conc lusion holds for d < 1, but for slightly different

reasons. Since z(c, d, x(a)) > 0 for x(a) << 0, points in X(o(~ ),c,d)

with x(a) << 0 may be scaled to lie in X’. If, however, x(i) = 0

for some i € a, then x(~~) = 0, and it is clear from 5.3.6 that the

profitability of x is non-positive. Hence such points may be excluded

from the search.

lli.3
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The problem of finding a profitable activity in the set X’ is

much easier than finding one in X(o(~~), c, d). In fact the most profit-

able activity in X’ is easily calculated . Since outputs are constant

on Xt, the problem reduces to finding the input mix which minimizes

factor costs and taxes, i.e.,

(5.3.7) minimize p(a) x(a)

subject to z(c, d, x(a)) = 1

x( a) ~~ O ,

where the x(a) are absolute input levels and p(i) = (1 + er’(.,i)) it(i)

for i € a are effective prices (including tax) paid for the inputs.

Since z increases with x(a) and since inputs cost money, the equality

constraint in 5.3.7 can be relaxed to z(c, d, x(a)) > 1 without affecting

the solution. The result is a nice convex program, differentiable for

x(a) >> 0. Analyzing the Kuhn-Tucker sufficient conditions for this

program yields a unique cost minimizing solution

d d/(l-d)

(5.3.8) rc(i) = [ ~M II [ i~a c(i)d ~(~ )]._d]
for i € a and d 4 1. Ii d = 1 the limiting form

(5.3.9) i(i) = 

~~ i~a{ 
(i) 
]

C(i)

must be used.
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The profit maximizing activity in the set X’ is, therefore,

= (x *(~~), x*(a) ) ( o(~ ), —~ ( a)) .

If x* shows a positive after-tax profit, as measured by 5.3.6 , then the

rescaled unit activity xM-/tlx*~I~ € X(o(~~) , c, d) together with its taxes

may be taken as the - production label. If, however, x~ earns a non-

positive profit, then so does every unit activity in X(o(~ ), c, d), and

the current sector must be bypassed in the label search. As was the

case in the activity analysis model, the search proceeds sector-by-sector

until a positive profit is found or until the sectors are exhausted.

The discrepancy noted earlier between the true CES production set

D~~2(t) : ~ 
>0) for sector £ of economy ~(t) and the set pos 132( t )

assumed in the general model disappears for all practical purposes due

to the nature of the labeling. One can show through arguments similar

to those used to establish Proposition 5.3.3 that the optimal input mix

x(cz) given in 5.3.8 and 5.3.9 varies continuously in (x ,r,t) provided

it >> 0. (Recall that the t and 2-parameters are suppressed in these

expressions.) Consequently the label candidate x*/~x*~ is also

continuous in (it ,r,t). Whenever two or more such candidates are used

to label an n-simplex encountered by the economic algorithm, then provide.d

the n-simplex has a small diameter (as is customary along approximate equi-

librium graphs), the labels wil). be virtually identical. Hence any pseudo-

production plan determined by these labels will approximate some member

of C\&2
(t’) : ?~ > 0) for all economies ~(t ’) near ~(t).

lli.5
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CHAPTE R 6

COMPUTAT IONAL EXPERIE NCE

The thrust of the preceding chapters has been to develop the theory

of a computationa l algorithm which, when implemented on a computer, can

generate explicit numerical approximations to equilibrium graphs. The

purpose of the present chapter is to describe the outcome of a series of

numerical experiments in which programs implementing the algorithm were

used to compute approximate equilibrium graphs for explicitly deformed

economies. The results of these experiments are presented from two per-

spectives. First, operating statistics such as precision of approximation

and measures of computational effort are tabulated and analyzed. Second,

portions of selected equilibrium graphs are displayed and interpreted .

In keeping with the methodological orientation of this study, primary

emphasis is placed on the former perspective .

The computer programs were applied to approximately twenty test

prob lems, of which thirteen are reported here. (The others involved

sing le economy runs or runs with the identity deformation.) All thirteen

problems are special cases of the production and consumption models pre-

sented in Chapter 5. Although limited in scope relative to Chapter 5’s

possibilities, these examples nevertheless typify the empirical models

currently ( 1975 ) in use. Among them can be found deformations of every

major component of the general economic model except consumer taxes.

Some of the problems reconstruct John Shoven ’s analysis of the effects

of differential capital income taxation in the U.S. The results of these
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experiments confirm that the pairs of equilibria compared by Shoven are

connected by equilibrium graphs spanning the evenly and unevenly taxed

economies .

The overriding message that emerges from the numerical experiments

is that approximating equilibrium graphs with prec ision involves a

tremendous amount of computational e f fo r t .  Tens and perhaps hundreds of

thousands of iterations are required to solve models of even modest size .

The fina l section of this chapter identifies the major factors responsible

for this unwonted behavior, and conc ludes that such computations are

inherently expensive because of the vast amounts of information represented

by densely defined equi librium paths.

6.1. Description of Test Problems

The thirteen test problems were derived from three basic economic

models by subjecting each to various deformations. Many of the problems

exclude the revenue systems of the basic model and hence fall under the

first variation of the general theory described in Section 3.6. Apar t

from the absence of revenue systems, each test problem fits two of the

three formulations presented in Chapter 5, and will hence be specified

in terms of the relevant Chapter 5 parameters.

The deformations in all test problems result from linear changes

in the defining parameters. Hence each family of economies (e(t))
~ € [0,11

is completely specified once the parameter values for ~(O) and ~(l)

are known. Since many parameters have the same value at both endpoints,

the most efficient procedure is to display all parameters for e(0) and

then identify the ones that change during the deformation.
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The f i rs t  basic economic model is the six-conmodity hypothetical

economy appearing in Section 5.3 of Scarf ’ s monograph (131. The model

features activity analysis production in a single time period setting.

No revenue systems are included . The connnodities traded in the model

have the following interpretations :

Cousnodity Description

0 Capital available at end of period

I Capital available at beginning of period

2 Skilled labor

3 Unskilled labor

Nondurable consumer goods

5 Durable consumer goods

Five groups of consumers participate in this hypothetical economy.

Their behavior for ~(o) is characterized by the parameters displayed

in Tables 6.1.1, 6.1.2, and 6.1.3. No revenue share factors or consumer

tax rates are needed since no revenue systems appear in the model.

Initial holdings exist for all conunodities except non-durable

consumer goods and end-of-period capital. Each consumer is endowed with

the potential to provide a fixed number of hours of labor services. Any

portion of the labor endowment, however, may be consumed as leisure.

According to conventional measures of wealth, consumer group 5 with 6.0

units of beginning capital is the richest, while group 2 with 0.1 units

-is the poorest . ( These holdings will be reversed in one of the teat
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TABLE 6.1.1. Initial Endowments w~(O)

Consumer Group

1 2 3 1~. 5

O 0.0 0.0 0.0 0.0 0.0

1 3.0 0 .1 2 .0 1.0 6.0

2 5,0 0.1 6.0 0.1 0.1
Co iodity

• 3 0.1 7.0 0.1 8.0 0.5

4 0.0 0.0 0.0 0.0 0.0

5 1.0 2.0 1.5 1.0 2.0

TABLE 6. 1.2. Demand Intensities a°

Consumer Group

1 2 3 4 5

0 li. .0 0.4 2.0 5.0 3.0

1 0.0 0.0 0.0 0.0 0 .0

2 0.2 0.0 0 .5 0.0 0.0
Cousnodity

3 0.0 0.6 0.0 0.2 0.2

4 2.0 4.0 2.0 5.0 4.0

5 3.2 1.0 1.5 4.5 2.0
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TABLE 6.1.3. Substitution Elasticities b~(o)

Consumer Group

1 2 3 4 5

1.2 1.6 0.8 0.5 0.6

pr oblems.) All goods except beginning capital are desired by at least

one consumer.

The production side of the economy is represented by an activity

analysis matrix consisting of eight non-slack unit activities. The

e(O) coefficients for these activities are shown in Table 6.1.4. No

producer taxes are included in this formulation. The activities are

TABLE 6. 1.4. Unit Production Activities x~

Non-S lack Activity

1 2 3 14 5 6 7 8

0 li..O 11.0 1.6 1.6 1.6 0.9 7.0 8.0

1 -5.3 -5.0 -2 , 0 -2 .0 -2 .0 -1.0 -li.O -5.0

2 -2.0 -1.0 -2.0 -14.0 -1.0 0.0 -3.0 -2.0
Conunodity

3 -1.0 -6.0 -3.0 -1.0 -8.0 0.0 -1.0 -8.0

Ii. 0.0 0.0 6.0 8.0 7.0 0.0 0.0 0.0

5 ~~~ 5.5 0.0 0.0 0.0 0.0 0.0 0.0
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grouped into three sectors : a durable goods sector consisting of activities

1 and 2; a non-durable goods sector consisting of activities 3, Ii., and 5;
and a capital formation sector consisting of activities 6, 7, and 8. All

sectors use varying amounts of labor and beginning capital as inputs,

and generate ending capital as a by-produc t .

Starting with the above values for e(O), linear deformations were

applied to selected parameters to yield three test problems. The deforina—

tions alter resource ownership, consumer tastes, and production technology.

Parame ters affec ted by the deformations are noted below for each problem.

Test Problem 1

The initial endowments of beginning capital held by the “richest”

and “poorest” consumers are reversed . Thus in g(l) consumer group 2

holds 6.0 units of beginning capital while consumer group 5 holds 0.1 units.

Tes t Problem 2

The substitution elasticities of all consumer groups are deformed

to the Cobb-Douglas val ue of 1.0.

Test Prob lem 3

The productivity of labor in all sectors is doub led . This is

accomplished by cutt ing the labor input coefficients in half , i.e ., for

£ = 1, ..., 8 and i = 2, 3, x~( i )  = .
~~ x~ (i) .
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The three test problems satisfy all the applicab le conditions of

Chapter 5 except 5.1. 111.. This condition is violated because no consumer

owns an initial endowment of ending capital or non-durable goods . The

breach of this condition, however, had no discernable effect  on the

performance of the algorithm because all prices along the equilibrium

graphs were positive. (The condition serves only to prevent pathological

behavior of demand as the prices of desired goods approach zero.) If

diff iculties had ar isen, the benefits of Condition 5.1.14 could have

easily been secured by a negligible adjustment to initial endowments ,

such as assigning hold ings of 0.000001 in goods 0 and 14. to each

consumer group.

The second and third basic economic models are, respectively,

the four and fourteen commodity empirical models of the U.S. economy

used by John Shoven (and John Whalley ) to estimate the efficiency loss

induced by unequal rates of taxation on the income from capital employed

in different economic sectors (16], [17] , [18]. Bo th models are based on

the same empirical data. They differ only in the number of sectors into

which the data are aggregated (two versus twelve). CES production

functions are used to describe the technology in each case.

Both models incorporate a single revenue system. Prices and revenue

levels are sca led, however, to lie on the transformed simplex

S’ = ((it,r) € R~
4 : ex + O.026905r = 1) rather than the standard simplex

S. One can easily verify that the theory of Chapters 2, 3, and 5 remains

intact with S’ replacing S. As for manifolds on S’ xtO ,OQ), one need

only multiply the r-componeat of each abstract vertex in S x [O ,oo) by
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the reciprocal of 0.026905 to obtain an equivalent vertex in

S’ x tO,oo) .

Owing to the scarcity of empirical data, some of the parameters in

Shoven ’s models had to be estimated exogenous ly . Such parameters were

typically assigned a range of likely values , each resulting in a separa te

version of the models. Of the many cases considered by Shoven , five were

selected for ana lysis here.

The detailed specification begins with the four-commodity basic

economy and its attendant test problems. The goods comprising this model

may be descr ibed as follows :

Commodity Description

0 “Non-corporate” outputs

1 “Corporate” outputs

2 Labor

3 Capital

The terms “corporate” and “non-corporate” are merely suggestive; a more

meaningful description of these categories will be provided when the

disaggregated model is introduced.

U.S. consumers are divided into two large groups, one re presen ting

the upper ten percent of a-il income recipients and the other the lower

ninety percent. The behav ior of these groups fo r ~(0) is determined

by the parameters contained in Tab les 6. 1.5 through 6. 1.8. Consumer tax

rates for j  = 1, 2 are not shown in the tables because they are

identically zero.
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TABLE 6.1.5. Initial Endowments w~(O)

Consumer Group

1 2

0 0. 0 0.0

1 0.0 0.0
Commodity

2 14-9.3959 167.9461

3 16.81416 25.2624

TABLE 6. 1.6. Revenue Shares ~~~O)

Consumer Group

1 2

0.6
1

TABLE 6.1.7. Demand Intensities a~

Consumer Group

1 2

0 0.125 0.158714-4

1 0.875 0.841256

Commodity
2 0.0 0.0

3 0.0 0.0
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TABLE 6.1.8. Substitution Elasticities b .(0)

Consumer Group

1 2

Cl1 0.5 0.5
Vers ion

C2 1.0 1.0

Initial holdings exist only for the input factors labor and capital.

Finished goods are the only ones desired . Consumers, therefore, sell

their entire endowments to producers and forego any labor-leisure choices.

Factor supplies are thus effectively fixed. Consumer substitution

elasticities had to be estimated exogenously, resulting in the two versions

shown in Table 6.1.8. These will be combinedwith different versions of the

production parameters to synthesize test problems.

Production in the four-commodity economy proceeds according to the

CES model of Section 5.3. Two production sectors are involved. Each

uses the two inputs labor and capital, so a1=a2 (2 ,3) . The output

sets for the two sectors nominally consist of goods 0 and I. Each

sector, however, produces only one item, so the unit output vectors

o
~
(
~ 2) 

are actually multiples of the unit vectors e1, e2 € R2. Factor

substitution elasticities had to be estimated exogenously and were then

used to derive the other parameters. Consequently Tables 6.1.9, 6. 1.10,

and 6. 1.11 each contain three versions of the CES production parameters

for e(0).
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TABLE 6. 1.9. Non-zero Components of Unit Output Vectors o~~(~~2
)

Commodity
Sector Produced Version P1 Version P2 Version P3

1 0 2.li.5070 2.44778 2.li.4778

2 1 1.96723 1,765314 1.514-519

TABLE 6.1.10. Input Weighting Factors c~ (cx
2)

Version P1 Version P2 Version P3

Sector Good 2 Good 3 Good 2 Good 3 Good 2 Good 3

1 0.39391i- o.6o6o6 0.35323 0.64677 0.35323 0.614677

2 0.79231 O~20769 0.88607 0.11395 0.96999 0.03001

TABLE 6.1.11. Substitution Elasticities d~(0)

Sector Version P1 Version P2 Version P3

1 0.99999 0. 25 0. 25

2 0.99999 0.75 0.50

The presence of a single revenue system in the model means that the

matrix of production tax rates for sector £ collapses to a vector.

All components of this vector are zero except the component corresponding

to capital inputs. The non-zero component approximates the combined

burden of corporate income, local property , and personal income and
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capital gains taxes borne by capital employed in sector 2. The burden is

expressed as a fraction of net income received by consumers from the

sale of their capital endowments to sector 2. The tax rates were derived

independently of the substitution elasticity estimates and are hence the

same for all three versions of the production parameters. Different

rates are assigned to .(0) and ~(l), however, reflecting the empirically

observed (unequal) values and a set of hypothetical equalized values.

Both sets of rates are displayed in Table 6.1.12.

TABLE 6.1.12. Non-zero Components of Production Tax

Vectors r2
0 and

Sector Coitmiodity Economy 0 Economy 1

1 3 0.li-5l69 0.145169

2 3 1.22112 0.14.5169

A total of seven test problems were derived from the four-commodity

models. Four of these suppress the revenue system and hence conform to

the first variation of the general theory described in Section 3.6.

Different versions of consumption and production parameters are used in

the seven prob lems. Sometimes the parameter sets are switched during

the course of the deformation . Other times the deformation involves more

fundamental changes in the economies.
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Test Problem 14. (revenue system excluded)

Consumption parameters Cl and production parameters P1 determine

g(0). The deformation consists of replacing the Cl parameters by the

C2 set (c .f. test problem 2).

Test Problem 5 (revenue system excluded)

The initial economy is the same as in Problem 1~.• Under deformation

both the production and consumption parameters are replaced by the C2

and P3 versions, respectively .

Test Problem 6 (revenue system excluded)

The initial economy is characterized by consumption parameters Cl

and production parameters P2. The deformation interchanges the capital

endowments of the two consumer groups (c.f. test problem 1).

Test Problem 7 (revenue system excluded)

The initial economy is the same as in Problem 6. The deformation

dep letes the capital endowments of both consumer groups by one-half.

Test Prob lem 8

The economic parameters and deformation are the same as in Problem 5.

This time, however, the revenue system is included, but with zero values

for tax rates and revenue shares.

l~8
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Test Problem 9

Consumption parameters Cl and production parameters P3 are in

effect for all economies. The deformation consists of reducing capital

taxes from the ~(O) to the e(l) values.

Test Problem 10

This problem is identical to the preceding one except that the P2

production parameters are used throughout.

One can readily verify that the seven test problems described

above satisfy all the requirements of Sections 5.1 and 5.3, except

Condition 5.1.14. As was the case in the first series of test problems,

this violation caused no practical problems for the algorithm, and could

have easily been fixed if it did .

The fourteen-commodity basic economic model is quite similar to the

four-commodity ones the only difference being the disaggregation of

“corporate” and “non-corporate” outputs into a tota l of twelve components.

Labor and capital are still the only factors of production. The full

list of commodities comprising the larger model is given below.

Commodities 0 through 2 were previously aggregated into “non-corporate”

outputs, while goods 3 through 11. constituted the “corporate” sector .

The same consumer groups participate in the disaggregated economy

as in the aggregated one. Consequently many of the same parameters apply.

Reven ue shares, substitution elasticities (both versions), and consumer

tax rates (all zero) are identical in the two models. Initial endowments
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Commodity Description

0 Agricultural products

1. Real estate

2 Crude oil and gas

3 Minerals ( other than oil and gas)

1~. Contract construction

- 5 Manufactured goods (other than 6 and 7)

6 Lumber and wood products

7 Petroleum and coal products

8 Trade

9 Transportation

10 Communication and public utilities

11 Services

12 Labor

13 Capital

differ only in the indices of commodities. Demand intensities, however,

are more numerous in the larger model. Tables 6.1.13 and 6.1.114 (the

counterparts of Tables 6.1.5 and 6.1.7) contain all consumer parameters

peculiar to the fourteen-commodity model.

The production side of the disaggregated model also resembles that

of the aggregated one. The main difference is that twelve rather than

two sectors are involved. Each sector uses labor and capital as inputs,

~~° ~~ = = a12 = (12,13). The remaining commodities are nominally
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TABLE 6.1.13. Initial Endowments w~(O)

Consumer Group

1 2

0-11. 0.0 0.0

Commodity 12 149.3959 167 .91461

13 16.81416 25.26214

TABLE 6.1.111-. Demand Intensities a~

Consumer Group

1 2

0 0.045889 0.058277

1 0.0713014 0.090553

2 0.007807 0.0099 15

3 0.011155 0.010725

ii- 0.061966 0.059576

5 0.361711- 1 0.34779 1

Commodity 6 0.010905 0.010485

7 0.016906 0.0162514

8 0.1.88992 0.181704

9 0.058137 0.055893

10 0.0148 1514 0.046297

11 0.117014-14. 0.112530

12 0.0 0.0

13 0.0 0.0
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classified as outputs for all sectors , although only one is actually

produced in each . The Lull contingent of production parameters for the

larger model appears in Tab les 6. 1.15 through 6. 1.17. The two versions

shown there correspond to versions P1. and P3 in the smaller model.

These tables, together wi th the tax rate Table 6. 1.1.8, constitute the

fourteen-cosinodity cow’~terparts of Tables 6.1.9 through 6.1.12.

TABLE 6. 1.1.5 . Non-Zero Components of Unit Output
0Vectors

Commodity
Sector Produced Version P1 Version P3

1 0 2.311529 2 ’  0

2 1 2 .38220 2.2 -

3 2 2 .06809 1.7~~ -

14 3 1.99859 1.56676

5 ii. 1.33739 1.14552

6 5 2. 15266 1.65283

7 6 1.914499 1.59951

8 7 2.676148 2.67633

9 8 1.86323 1.511114

10 9 1.7711-89 1.39553

Il 10 3.08310 2.70408

12 11 1.30459 l.l2971i.
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TABLE 6.1.16. Input Weighting Factors

Version P1 Version P3

Sector Good 12 Good 13 Good 12 Good 13

1 0.54051 0.1459149 0.84694 0. 15306

2 0.27152 0.728148 0.05835 0.914165

3 0.650~4 0.314946 0.95962 0.Oli-038

11. 0.78607 0.21.393 0.96811 0.03189

5 0.93311 0.06689 0.99739 0.0026 1

6 0.76350 0.23650 0.963149 0.0365 1

7 0,77163 0.22837 0.95236 0.04764

8 0.378714 0.62126 0.38391 0.61609

9 0.80001 0.19999 0.967 15 0.03285

10 0.83993 0. 16007 O.981i-5 l 0.01514-9

Il 0.53260 0.1467140 0.76703 0.23297

12 0.93981 0.06019 0.997814 0.00216
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TABLE 6.1.17. Substitution Elasticities d2(0)

Sector Version P1 Version P3

1 0.99999 0.25

2 0.99999 0.25 -

3 0.99999 0.25

14 0.99999 0.50

5 0.99999 0.50

6 0.99999 0.50

7 0.99999 0.50

8 0.99999 0.50

9 0.99999 0.50

10 0.99999 0.50

Il 0.99999 0.50

12 0.99999 0.50
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TABLE 6.1.18. Non-Zero Components of Production Tax
Vectors and

Sector Commodity Economy 0 Economy I

l 13 0 .14214141 0.1421441

2 13 0.147526 0.14244 1

3 13 0.25551 0.1421441

ii. 13 1.214837 0.42 1441

5 13 0.96546 0.421441

6 13 1.53182 0.1421441

7 13 0.75 122 0.4211-41

8 13 0.67663 0.1421441

9 13 0.83978 0.14214141

10 13 1.30895 0.1421441

11 13 1.53576 0.4214141

12 13 0.89282 0.14214141

The last three of the thirteen test problems are based on the four-

teen-commodity model. As in the case of the smaller model, different

combinations of consumption and production parameters are used to define

the economies. Each of these problems duplicates one of the four- conmtodity

examples in terms of the parameter sets employed and the deformation applied .

Consequently each will be specified via reference to its predecessor .
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Test Problem 11 (revenue system excluded)

Refer to Test Problem 4.

Test Problem 12 ( revenue system exc luded)

Refer to Test Problem 5.

Test Prob lem 13

Refer to Test Problem 9.

A sunmtary of the distinguishing characteristics of the thirteen

test problems appears in Table 6.1.19.

6.2. Behavior of Algorithm on Test Problems

The thirteen test problems were solved using a group of computer

programs fashioned after the outline presented in Section 11. 14-. Different

programs handled the two types of production and the examples with and

without revenue systems. The programs were written in IBM ’s vers ion of

FORT RAN IV and compiled using the 11-level compiler with optimization

option 2 (to minimize execution time). The longest program contains

more than 2000 FORTRAN source statements.

The machines used to run the programs were the IBM 360/91 and the

two IBM 370/168’s located at the Stanford Linear Accelerator Center .

These are among the most powerful central processing units commercially

ava ilable, and their power was fully utilized by the larger test problems.

All, but one of the problems was allocated four minutes of CPU time, yet
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this proved insufficient for two of them to run to completion (i.e., reach

g(1)). The unrestricted problem consumed 21 minutes of CPU time.

Various operating parameters had to be set for each run of the

programs. These were typically adjusted by trial and error until accept-

able values were found . The basis of the linear inequality system was

- 
re- inverted every 20 or 30 iterations to maintain accuracy. This proved

adequate even though some columns of the basis (representing CES produc-

tion activities) differed only in the seventh decimal place of a single

component. Full equilibrium reports were produced each time the economy

index changed by 0.1. Consequently eleven snapshots (minimum) were

taken of the equilibrium graph during each complete run.

The most sensitive operating parameter turned out to be the economy

index scaling factor. This constant converts vertical movements in

the cylinder S x (O,o) (ab ove the threshold level 21) into changes in

the economy index. Equivalently, it alters the vertical spacing of grid

points. Hence it provides a means of balancing incremental shifts in

economic behavior due to deformation against those caused by price changes.

For large values of the scaling factor (above 1000), the algorithm floundered

about the e.(0) leve l, apparently unable to digest the relatively large

deviations inherent in a vertical step. An exception to this behavior

was observed in the examples (not  reported here) involving the identity

deformation. In these problems the algorithm proceeded directly to ~(l).

Like conventional equilibrium and fixed point problems, however, the

labels in these examples do not change as a funct ion of height .
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For small, values of the scaling factor (less than 20), the algorithm

proceeded smoothly up the cylinder. Its rate of progress through the

economies, however, was so slow that it seldom got beyond e(0 .1) before

the allotted time expired . The optimum value appeared to lie in the

range of 100 to 150. The smaller values yielded better performance in

problems involving relatively “severe” deformations, and conversely.

Scaling factors near the optimum value were used in the runs summarized

below.

Another sensitive set of operating parameters were the range error

tolerances described in Section 11.3. Virtually all, the components of

range error observed in the equilibrium reports for the thirteen test

problems satisf ied the loose tolerances. Roughly half satisfied the

central tolerances, while very few satisfied the tight tolerances. Often

a single critical coimnodity appeared to determine the outer limit of gr id

size. These findings indicate that the dynamic control mechanism was

successful in maintaining relatively uniform levels of range error along

the approximate equilibrium graphs.

On the whole the market tolerances tended to be harder to satisfy

than the profitability tolerances. Cutting market tolerances in half

frequent ly reduced profitability errors by an order of magnitude.

Tighter tolerances of either type resulted in finer grids and hence more

iterations. The tolerances used in the runs reported below represent a

compromise between accuracy and computational expense.

Detailed statistics from the best runs of the thirteen test prob lems

are displayed in Table 6.2.1. A quick glance at this table reveals several
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tASLE 6.2.1. CospuCatio~a1 SC4CLsCtCS

Mar ket
P rofit Tol.ra gc.s Grid Size

41 Goudu Teleren ces (~~) t is rattoos Index (x  lO’7)
-Lao s. •Loos• Itura tt ons At Of •Maxi ~~

t .st R.v.nus .C.etrel -C.otrat At Final Ft~aI •Av.r.g.’ d Manifold CPU-ttwe CPU
?robls. Syits.s •TLibC -‘tt~ht Econc y 0 Ecoaoo~ Econo~~’ •Mint~ u~ Blocks (Minute.) Typ.

1 6 
‘ 0.0005 0.5 1,22 614,1,31 1.01 153 2.66 360/91

0.0001 0.1 150
0,00001 0.01 76

2 6 0.0005 0.5 1422 17,1472 1.01 153 4 0.86 360/91
0.0001 0.1 130
0.00001 0.01 76

3 6 0.0005 0.5 1422 161,009 O.~7 610 50 4.00 370/ 168
0.0001 0,1 200
0.00001 0.01 . 6

14 0.001 1.0 201 14,1471 1.01 510 3I~ 0.12 370/ 166
0.0005 0.5 200
0.0001 0. 1 76

5 14 0.001 1.0 201 21,7140 1.03 610 914 0.514 370~ 168
0,0005 0.5 250
0 0001 0,1 153

6 14 0.001 1.0 213 14,.~53 1.02 610 141 0.12 570/ 168
0,0005 0,5 230
0.0001 0.1 76

— ‘~ 0.001 1.0 213 56,1,87 1.01 305 169 1.55 370, 168
0.0005 0.5 170 -0.0001 0.1 76

3 5 0.001 5.0 170 11,536 1.06 1,221 10 0.28 701 166
0.0005 1,0 370
0,0001 0.3 610

9 5 0.001 5. 0 ~O8 15,536 1.01 2,L~14L 16 0..i3 Y’O/ 166
0,0005 1,0 1,000
0.0001 0.3 16

10 5 0.001 5.0 311 15,5 140 Lit 2,~ 141 16 0.-42 370, 166
0.0005 1.0 1 200
0.000 1 0.3 610

11 114 0.001 2.0 14,323 214,1403 L05 610 5I
~ 2.23 560/91

0.0005 1.0 550
0 0001 0.5 153

142 114 0.001 2.0 14,523 142,602 0,50 1,221 20 14 ,00 560/91
0.0005 1.0 500
0.0001 0.5 305

13 1/’ 0.001 5 . 0 13,768 206 ,355 1.08 1,221 6 2133 560, -l i
0.0005 1.0 390
0.0001 0 ,3 305

Apprexteats , -
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numbers that are strikingly disproportionate to those normally encountered

in equilibrium and fixed point calculations . Most notable are the total

numbers of iterations required to solve the problems. These range from

a few thousand to hundreds of thousands, with the majority lying in the

tens of thousands range. The number of iterations required to reach an

approximate equilibrium for ~(O) account for an insignificant fraction

of the total. Yet these seemingly negligible values are the ones that

should be compared with the results of traditional problems of this size.

The pr incipal explanation for the inordinately large numbers of

iterations can be found in the column entitled “Grid Size”. The manifold

mesh required to satisfy the specified tolerances ranged from ten-thousandths

of a unit down to millionths, with typical values in hundred-thousandths.

Such tiny simplices are rarely encountered in equilibrium or fixed point
S

calculations, outside of Newtonian termination or acceleration routines.

Yet the economic algorithm had to pivot through regions covered by

simplices of this size. Homotopy-type fixed point algorithms reach such

diameters only at the 15th or 16th level of refinement, and then they

stop. At this point the economic algorithm is just getting started. A

reasonable analogy would be to operate Scarf’s algorithm with 50,000

grid points along each edge of the simplex instead of the usual hundred

or so. In the next section the connection between grid size and number

of iterations will be made more precise.

Although the total iteration counts for the test problems are large

as a group, sizeable differences exist from problem to problem. Few of

these differences can be attributed to grid size. On the contrary
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iteration counts appear to be negatively correlated with average grid size.

Some of the differences can be explained, however , by the dimensionality

of the problems. The 14 and l5-”commod ity ” runs, for examp le, tended

to require many more iterations than the 1i.,5, and 6- ”counnodity” runs

(problem 12 must be adjusted for the fact that it only reached e.(0.3)). H

Differences among the smaller problems cannot, however, be attributed to

their dimertsionality. A better explanation is afforded by the shape of

the equilibrium graphs, some of which are disp layed later in this section.

Prob lems whose gra phs embody the most radical price changes tended to

require the most iterations. Problems with comparatively minor price

variations required the fewest iterations. These facts suggest that

computational effort in parametric equilibrium problems depends heavily

on the severity of the applied deformation. Additional evidence in

support of this hypothesis will be offered in the next section.

Despite the unprecedented numbers of iterations required to compute

full equilibrium graphs, the performance of the algorithm in locating

approximate equilibria for the initial economies was quite respectable.

Compared with Scarf ’s algor ithm, which is the standard technique for

approximating general economic equilibria, the economic algorithm per-

formed extremely well. Based on three single-economy examples with

activity analysis production (the 6 and lli— couimodity examples in Scarf’s

book (131 and the 7-coumiodity example in Shoven ’s dissertation [l11.J ),

the economic algorithm achieved a seven-to-tenfold improvement in itera-

tions required to attain a given level of accuracy . Such results are

consistent with similar experience in conventional fixed point prob lems.
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Two columns of statistics in Table 6.2.1 shed some light on the

performance of the dynamic control mechanism. The manifold block counts

and grid size ranges indicate that substantia l fluctuations in range error

were detected during the course of the algorithm, and that the dynamic

construction mechanism adjusted the manifold in response to these

fluctuations. The observed stability of range error confirms that the

adjustments had the intended effect. The most extreme variation in grid

size occurred in prob lem 9 where six levels of refinement were used. The

least variation occurred in problems 1, 2, and 8 where only two levels

were used. No discernable characteristics of the test problems adequately

explain the observed differences in block counts or grid size variation.

The CPU time consumed by the test prob lems may be analyzed in terms

of CPU time per iteration times number of iterations. The time per

iteration depended to a large extent on the number of dimensions in the

prob lem, the dependence being approximately quadratic over the experi-

mental range. Variations in the number of iterations have already been

discussed .

Another perspective on time consumption is provided by Table 6.2.2.

It is evident from the sample of problems presented in this table that

the bulk of the processing time was expended on label generation. Pro-

duction labels and demand labels on average comprised roughly equal

portions of the total, although the shares in individual cases were

influenced by the relative numbers of consumers and production sectors.

The second most expensive activity was label system manipulation, which

used about a third as much time as label generation. Basis re- inversion
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accounted for a minor fraction of this total. Surprising ly, the most

logically intricate activity, manifold construction and pivoting, con-

sumed comparatively little time.

Probably the least exciting aspect of the numerical experiments

was the type of approximate equilibrium graphs they produced . In all

thirteen test problems the algorithm proceeded inonotonically through

the fami ly of economies from &(O) to ~(1) . No backtracking or

“catastrophe” effects were observed. This may have happened because the

economies in the test prob lems admit unique equilibria . On the other

hand, the monotone behavior could have resulted from geometries similar

to those illustrated in Figures 1.1.2 or 1.1.3. Unf3rtunately none of

the known testable criteria for uniqueness apply to the economic models

considered here because of the CRS production ,

The case for uniqueness receives some support from the fact that

in all prob lems for which compar isons are val id, the observed equilibria

for e(0) and e.(l) agree completely with those obt~.ined by Scarf and

Shoven using different computational techniques. The three six-commodity

test problems reached an approximate equilibrium for ~(O) identical to

the one reported in Scarf’s book (13], which was obtained via Scarf’s

algorithm. The five and fifteen— ”couoinodity” examples (test prob lems 9,

10, and 13) matched Shoven ’s results at both ends of the equilibrium

graph. Shoven obtained his pairs of equilibria by forcing the uneven ly

taxed economy to fit empirical observations and by subjecting the tax-

equalized counterpart to a Newtonian search routine. Since the economic

algorithm located the manually imposed equilibria from scratch and tied
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them to the Newtonian search results by equil ibr ium paths , it seems

plausible that the equilibria in these models might be unique.

Price movements along the approximate equilibrium graphs were

ge1~erally predictable considering the economic interpretation of the

test problems. With rare exceptions prices moved monotonically through

the families of economies reflecting, no doubt, the monotone nature of

the deformations. The degree of price variation ranged from virtually

nil to sixty-five percent. The most’ pronounced variations occurred in

the four problems depicted in Figures 6.2.3 through 6.2.6. These figures

attempt to convey the rudimentary geometry of each equilibrium graph by

plotting individual price (and revenue) components on a single pair of

axes. Logarithmic price scales are used to emphasize proportional changes.

The deformation in test problem 3 doubles the productivity of labor

in all sectors. This effectively increases the supp ly of labor available

to the economy. Consequently the prices of both types of labor (goods 2

and 3) fall off  sharp ly during the course of the deformation. As the

effective supply of labor increases, beginning capital (good 1) becomes

relatively scarce as a factor of production and hence increases in price.

Labor intensive outputs (good Ii.) decrease in price accordingly, while

capital intensive items (good 5) become more expensive. Curiously during

the initial third of the deformation, prices appear to move counter to

the overall trends. The explanation for this phenomenon is hidden in the

detailed production plans for the first few economies. As labor grows

more efficient, technology in the non-durable goods sector shifts away

from capital intensive activity 3 toward labor intensive activities 1~.
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and 5. This shift absorbs the extra labor liberated by the deformation

and then some. When the shift is complete the expected trends set in.

The process resembles a change of basis in a parametric linear program

and is responsible for the only non-monotone price movements observed

in the test problems .

The deformation in test problem 7 depletes the economy ’s initial

capital stock by fifty percent . As one would expect, the relative price

of capital (good 3) rises sharply while the price of labor (good 2) falls.

Capital intensive outputs (good 0) and labor intensive outputs (good 1)

follow the price movements of their principal input factors.

Test problems 9 and 13 feature the removal of surtax from capital

employed in heavily taxed sectors. As the tax rates are reduced, the

market price of capital (goods 3 and 13, respective ly) rises to offset

its otherwise lower effective price. Revenue levels (goods 1~. and lii.,

respectively) decline accordingly. Outputs from sectors burdened with

heavy tax rates (goods 1. and 10, respectively) decline in price, while

the outputs of lightly taxed sectors (goods 0 and 0, 1; respectively)

become relatively more expensive. Differences in relative factor intensities

across the sectors exert some influence on output price movements, but

these effects are largely outweighed by the elimination of tax differentials.

6.3. Interpretations and Conclusions

Computationa l experience with the thirteen test prob lems indicates

that the economic algorithm works in practice as well as in theory . The
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uniform approximation problem, a major obstac le to implementation, was

successfully overcome by the dynamic manifold construction mechanism

(at least for the class of examples considered here). The only disquieting

aspect of the algorithm ’s performance is the massive amount of computa-

tional effort apparently required to solve even small examples. Var ious

explanations were offered in the previous section for this unfortunate

behav ior. In the present section a more rigorous analysis of iteration

counts will be conducted using theoretical lower bound formulae adapted

from the work of Michael Todd .

In his paper on the design and critique of triangulations for

computing fixed points (21], Todd introduces various theoretical measures

of computational efficiency. One such measure is the directional density

N(G,d) of a triangulation G in the direction d € ~~~~ N(G,d) measures

the average number of simplices in the triangulation G which intersect

each unit length of a long straight line segment parallel to d. Todd

derives a formula for N(G,d) when G is the triangulation J1(~ )

defined in Section Ii..2, namely

(6.3. 1) N(J1(~~), d) = ~~ maxo )d(i)I , Id( i) I)  .
2 i<j

Based on this formula the total number of simplices of J
1(8) 

which

meet a line segment in ~n+I (long compared to ~) with endpoints x0

and x1 can be accurately approximated by ‘
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(6.3.2) ~~ X~~
, 

- x
O!!2 N(J1(l), xl - x0)

Note that the directional density is “normalized” to a grid size of unity.

This permits independent evaluation of the impact of grid size, segment

length, and segment direction .

Expression 6.3.2 enables the calculation of theoretical lower

bounds on the number of iterations required to generate approximate

equilibrium graphs. First consider an equilibrium graph contained

entirely in a manifold block of Type 0 (in D2). Clearly the number

of iterations required to generate such a graph must exceed the number

of (n÷l)-siniplices lying along the line segment connecting its endpoints

and v1. This is precisely the number given by 6

:

3.2 with x
0 = u”1’(v0)

and x
1 = u (v 1), where u is the affine homeotnorphisin defined in

Section li. 2. Now suppose the equilibrium graph spans several manifold

blocks of Type 0, Formula 6.3.2 still tells how many simplices inter-

sect the line segment connecting the endpoints provided the 1/~ factor

is replaced by the average of such factors for the individual blocks,

weighted by the thicknesses of the blocks. Finally consider an actual

equilibrium graph generated by the algorithm. Such a graph typically

passes through manifold blocks of all three types. Experience with the

test problems indicates, however, that substantially all of the iterations

take place in Type 0 blocks. Hence reasonable approximate lower bounds

can be calculated by ignoring the transition layers and treating the

manifold as if it consisted entirely of Type 0 bloc ks .
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Straight line lower bounds for the thirteen test problems were

calculated in the manner described above. The results of these calcula-

tions are displayed in Table 6.3.1, along with the ratios of actual

iterations to the lower bounds. The table also contains a breakdown of

the lower bounds into factors t/~ , ~!x1 
- x

011 2, and N(31(l), 
x
1 

- x0).

Decomposing iterations in this manner lends quantitative support to the

informal analysis of iteration counts advanced in the previous section.

Grid size, for instance, is clearly responsib le for the overall order

of magnitude of the counts, but does little to explain the differences

among test problems. The normalized directional density N(J1(l), 
x
1-x0)

accounts for most of the difference between the lower dimension problems

and the fourteen and fifteen-”cotinnodity” examp les, but says nothing

about prob lems of comparab le size.

The most telling source of variation in iteration counts among

similarly sized problems is the length of the transformed line segment

11x 1 - x01!2. (Contrast the values of this factor for problems 3 and 7

with those for problems ii. and 6.) Differences in 1Jx 1 - x0!12 are in

turn caused by different degrees of price-revenue variation along the

approximate equilibrium graphs ,* By attributing the degree of price

change to the “sever ity” of the deformation, one obtains a useful heuristic

*The reasoning behind this assertion is as follows. All test problems
( except number 12) ran substantially to completion. The economy index
scaling factors were essentially the same. Hence all prob lems covered
the same vertical distance in S x [0, ~ ) .  Mapping back to ~~ x (O,co)
via u”1 preserves vertical disp lacements. Hence all variations in
lxi. - x0~2 were induced by horizontal displacements, which are in turn
caused by price-revenue changes.
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in terms of which the amount of computational effor t required in par ticular

examples can be explained and possibly anticipated.

For purposes of evaluating the eff iciency of the algor ithm, the

most important figures in Table 6.3.1 are the ratios of actual iterations

to straight line lower bounds. These ratios provide a rough measure of

the degree of oscil lation expe rienced by the algor ithm as it progressed

through the families of economies. Cons ider ing that the lower bounds do

not allow for the natural curvature of the equilibrium graphs, and that

they are uniformly understated (see footnote to Table 6.3.1), the ratios

indicate very respec tab le perfor mance on the par t of the algorithm. In

some ins tances the lower bounds came c lose to being achieved. At the

very worst the discrepancy was half an order of magnitude. Contrast

this to the four orders of magnitude contributed by reciprocal grid size.

Also , when evaluating the algor ithm ’s perf ormance, it should be kept in

mind that the labeling used in the algorithm is extremely discontinuous,

a trait which tends to encourage oscillation in search algorithms of this

type.

On the basis of the ratio analysis it seems reasonable to conclude

that the exorbitant computational effort expended in computing approximate

equilibr ium graphs res ults not fr an the ineff iciency of the economic

algor ithm, but ra ther from the vast amount of informa tion inheren t in

precisely specified equilibrium paths. Granted that parametric equilibrium

problems are intr insically expensive to solve, some means must be found

to conse rve iterations if the algor ithm is ever to be applied beyond

small research problems. Two possibilities come to mind. One is to

1.86
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reduce the dimension of the price-revenue simplex over which the search

for equilibria takes place. Various dimension reduction techniques that

exploit special structure in the economic model have been developed for

use with Scarf’s al gor ithm. Some of these techniques can undoubtably be

adapted to parametric calculations.

The other possibility is to expand the mesh of the grid on which

the algor ithm opera tes . Ideally this could be accomplished without

sacrificing approximation accuracy. Unfortunately all attempts to

improve the range error/domain error relationship proved unsuccessful,

probably because of labeling discontinuities. The only recourse, there-

fore, appears to be relaxing accuracy requirements. The numerical

experiments may in fac t have demanded too much of the algorithm by

requiring that entire paths of equilibria be computed with the precision

one normally expects for single equilibria. Once the general shape of

an equilibrium graph is determined, highly refined approximations can

easily be computed for particular economies of interest. Of course one

never knows how far the tolerances can be relaxed and still maintain

adequate resolu tion. This can only be determined by trial and error for

particular examples. Nevertheless, the potential for acceleration is so

vast (ranging up to three orders of magnitude before demand labels dis-

appear) that such experimentation warrants serious consideration.
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APPENDIX A

TECHNICAL LEMMAS

This appendix develops a portion of the mathematical machinery

needed for the proofs of Chapter 3. The machinery is designed to cope

with various abstractions built into the economic model, e.g., generalized

tax functions (Lemma A.l), uncountable activity sets (Lemmas A .2 and A.3),

and multivalued demand correspondences (Lemma A .5). The results are

readily stated and proved in terms independent of the formalism of

Chapter 3, and hence have been removed to this appendix to streamline

the exposition.

A.l. LEMMA. Let ~ : D -+ (R
m
)* be a bounded u.s.c. correspondence

on a compact domain D C R
k
. Then for any closed subset E of

U ~(x) is compact.
xE~

Proof: Since ~ is u.s.c. and bounded and D is compact, the graph

of ~ is a compact subset of x ~
m
. The set U ~(x) is precisely

x€E
the projection onto R

m of the compact set formed by intersecting the

graph of ~ with the closed cylinder E x R
m
, and is therefore compact. 0

k m~~ k m
A .2. L~~4A . Let A € R and b £ R for 0 < k <~~~. Def ine

= (X
k € : Ak ~

k > bkj. Suppose Ak -~ A~, bk ~~~~ and f is

non-empty and bounded. Then 3 N € z s.t. u is bounded.
k=N
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Proof: Since P°° is non-empty and bounded the system A°° x ° > 0,

> 0 must be infeasible. According to Tucker’s al terna tive theorem

(11) 3 y € s.t. yA~
° << 0. Clearly yA

k 
-~yA

’
~
°, and since bk ~~~~

3 N € Z s • t. k � N imp lies yAk <~~ 7A°0 << 0 and bk > b~-e. Thus

for k .? N and ~k in

~ yA~ x
k 
> yA~ x

k > yb
k 
� y(b

X
~e)

which implies

< 
2y(b~-e)

(yA°°)( i)

f or 0 < i < n-I. Hence u P1’ is bounded. 0
k=N a

A .3. LEMMA . Let C and ~ be non-empty compact subsets of R
m
.

Define

= [C € ~
m><fl : columns of c lie in c}

For C in C~ 
and d in ~ def ine

P(C,d) = (x € : Cx > d) .

Suppose P(C,d) is non-empty and bounded for each (C,d) in C’~ x ~~~.

Then
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U P(C,d) is bounded.
(C,d )€ C  x~

Proof: If the union is unbounded, then there exists a sequence (xk
, c

k
, d~5

in R x C~ x ~ such that ~
k € P(Ck, d

k
) and ii~

kii -+~~o • Since C~ x ~
is compact there exists a subsequence of (xt

~, c
k
, d~5, for convenience

also indexed by k, along which ck —~C~ E and dk —~d~ € ~~~. By

Lemma A.2 3 N € S.t. U P(C
k
, d

k
) is bounded, contradicting

k k=N
the fact that lix ii -. ~~~~~. 0

A,li.. LEMMA. Let X be a compact subset of R~, and let A and

B be closed subsets of X. Suppose (xk) is a sequence in X such

that as k —~~~~~~
, !lx

k 
- ~

k+1ii ..+ O, d is t (xk
, A) —+ 0 , and di s t (xk

, B) -+0.

Then the set A of limit points of (x
k
) is a connected subset of X

which meets both A and B.

Proof: Since X is compact, A is non-empty and compact. Suppose A

is not connected. Then there exist open subsets U and V of X which

are disjoint and which meet and partition A. Both A fl U and A fl V

are compact since they are each complements in A of relatively open

subsets of A (namely each other). Hence they are a positive distance

apart. Let M and N be open neighborhoods of A Ii U and A fl V which

are also a positive distance apart. Since (x1
5 meets both M and N

M k k+1.infinitely often and since x - x —, 0 as k —, 
~~~, 

the sequence
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(x15 must meet the compact set X\(M U N) infinitely often and hence

have a limit point there, contradicting the fact that A C M U N.

Sinc e A and B are c losed for each k in Z there exist
, ÷

closest points a~
C and bk to xk in A and B respectively.

Since A and B are compact the sequences (a
1
5 and (bk) have limit

points a~ in A and b~ in B. Clearly dist(a~, (x15)

= dist (b~, (x
1
5) = 0, so both a’° and b~ belong to A. 0

A .5. LEMMA. Let • : D ~,(~ m)* be a bounded continuous corres-

pondence on a compact domain D C R~. Assume that R’~ and Rm are

normed by JI and respectively. Then V c > 0 there exists

ö > 0 such that for all x,y in D with lx-Y~~ <5 , and a in

there exists b in ~~ r) such that lt a-b ll q < ~~~.

Proof: If the conclusion were false, then there would exist € > 0 s.t .

VS > 0 3 x,y in D and a in ~(x)  s .t . ~x-y~~ < S and la~bll q ~ 
£

for all b in ~(y) . Since D is compact and ~(D) is bounded, one

could then construct a sequence (x1
~, ~k 8k 5k) along which —

~

- ~k
11 < 5k ~k -, x°~ € D, ak € 

~
( xk) ,  ak 

—, a~ € Rm
, and V bk in

~(~~k) Ilak 
- bk il q~~ c. Clearly ~k -4x ~ , and by the u .s. c . of

€ •(x°°) .  But for large k, (lak - a~ilq <~~~, and thus V b k in

llb
k 

- a’°U
q �~~

. This contradicts the l.s.c. of ~~~. 0

A .6. DEFINITION . The constant S > 0 corresponding to a given

€ > 0 in Lemm~a A.5 is said to be a p-q uniformity constant for
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